大功率三相异步电动机(异步电动机)

异步电动机(英语:asynchronous motor)也称为感应电动机(induction motor)是交流电动机的一种,由定子线圈利用电磁感应的方式使转子产生电流,让电动机产生力矩[1],这样就不用安装永久磁铁。异步电机可按转子绕组形式,分为绕线式和鼠笼式[a]。绕线型的均为三相电动机,而鼠笼式的有三相电动机,也有单相电动机。鼠笼式感应电动机的转子可以不用连接电动机外部的电路[b][c]。

三相异步电动机是工业用的电动机械,其功率范围从几瓦到上万千瓦,具有广泛的应用范围。三相异步电动机由三相电路为其提供动力,因为不需启动电路,而且可靠、价格不高,主要应用于挖掘,流体输送等需要提供动力的领域,例如机床、中小型轧钢设备、风机、水泵、轻工机械、冶金和矿山机械等。在化工,物流,工程制造等领域都广泛应用。其中主要是以鼠笼式异步电动机为主。单相异步电动机主要用在负载较小的场合,电风扇、洗衣机、电冰箱、空调器等家用电器等。

异步电动机的传统应用是用在定速的场合,不过越来越多的三相异步电动机应用是配合变频器(VFD)或是变速驱动器使用。变频器可以配合频率调整输出电压,若是应用在离心型风扇、泵浦或是压缩机上,配合感应电动机有可以达到节能的效果。

异步电动机若接在频率为f的电网上运行时,转速n与电网频率f之间不存在同步电动机那样的恒定的比例关系。同步速和转子转速之间有转差,转差率通常介乎3%到10%。如果转子转速高于同步速,则变成发电机。

目录
  • 1历史
  • 2运行原理2.1同步速2.2转差率2.3转矩2.4启动
  • 3速度控制3.1电阻3.2级联3.3变频器
  • 4架构
  • 5反向旋转
  • 6功率因数
  • 7效率
  • 8斯泰因梅茨等效电路
  • 9线性感应电动机
  • 10相关链接
  • 11参考资料
  • 12脚注
  • 13外部链接
历史[编辑]

尼古拉·特斯拉发明的异步电动机的模型,放在贝尔格莱德的尼古拉·特斯拉博物馆

鼠笼式电动机的架构,只显示三层转子的叠片

法国科学家弗朗索瓦·阿拉戈在1824年阐述了旋转磁场的存在,他称为阿拉戈旋转。英国物理学家华特·贝利(Walter Baily)在1879年靠手动的将开关打开及关闭,展示了阿拉戈旋转,算是第一个感应电动机的原型[2][3][4][5]。第一个没有交换子的二相交流异步电动机则是由匈牙利工程师奥托·布拉什发明[6][7]。

第一个没有交换子的三相异步电动机是由费拉里斯在1885年发明,并制作可用的电动机。而尼古拉·特斯拉在1887年独立发明三相异步电动机。特斯拉在1887年11月申请了美国专利,部分专利在1888年5月获准。而费拉里斯在1888年向杜林皇家科学会提出实验报告,对旋转磁场作了严格的科学描述,为以后开发异步电动机、自起动电动机奠定了基础。费拉里斯相信他所提出的旋转磁场理论以及他所开发的新产品在科学上的价值远远超过物质上的价值,因此他有意不为自己的发明申请专利,而是在实验室向公众演示这些最新成果[5][8]。特斯拉在同年5月向美国电气工程学会(AIEE)提交了技术论文《交流电动机及变压器的新系统》(A New System for Alternating Current Motors and Transformers)[9][10][11][12][13],其中描述了三种四极电动机的架构:其中一个有四极转子,是无法自启动的磁阻电动机、另一个是转子绕组接直流电的同步电动机,最后一个则是可以自启动的绕线转子感应电动机。

当时发展交流电系统的乔治·威斯汀豪斯,在1888年向特斯拉申请了专利授权,并且以费拉里斯异步电动机的概念申请了美国专利[14]。有一年的时间也雇用特斯拉为顾问。威斯汀豪斯指定员工查尔斯·F·斯科特协助特斯拉,后来也负责威斯汀豪斯公司的异步电动机开发[9][15][16][17]。米哈伊尔·多利沃-多布罗沃尔斯基在三相电力系统的开发上非常坚定,在1889年发明了笼型转子的感应电动机,在1890年发明了三相多芯柱的变压器[18][19]。威斯汀豪斯公司在1892年制造了第一个实际可用的感应电动机,在1893年开发了多相赫兹的感应电动机,不过早期威斯汀豪斯公司的电动机是二相电的系统,转子也是绕线型的转子,一直到本杰明.G.拉姆才开发转子条绕线(rotating bar winding)的转子[9]。

英国通用电气公司(GE)在1891年开始开发三相的感应电动机[9]。英国通用电气公司和威斯汀豪斯公司在1896签署了转子条绕线(rotating bar winding)设计的交互授权协议,此设计也是后来的鼠笼型转子[9],亚瑟·E·肯尼迪是第一个用复数(用j来表示-1的平方根)来处理交流分析中90º旋转运算子的人[20]。GE公司的查尔斯·普罗透斯·斯泰因梅茨也发展了许多有关交流复数量的应用,其中包括一个分析工具,现在称为感应电动机的斯泰因梅茨(Steinmetz)等效电路[9][21][22][23]。

异步电动机的发展迅速,1897年7.5马力的异步电动机,同尺寸的异步电动机在1976年会输出100HP的功率[9]。

运行原理[编辑]

电枢中通入三相交流电时产生旋转磁动势和旋转磁场

旋转磁场是由三个不同相位线圈产生的磁场矢量加和形成

在异步电动机或是同步电动机中,都是由电动机定子通入交流电,产生和交流频率相同的旋转磁场。

异步电动机的转子绕组中没有使用外加电源供电,而是通过定子产生的旋转磁场(其转速为同步转速n1)与转子绕组的相对运动,转子绕组切割磁感线产生感应电动势,从而使转子绕组中产生感应电流[24],感应电流的方式类似变压器中二次绕组感应电流的方式。

转子绕组的感应电流会在转子产生磁场来反抗定子磁场造成的变化。因为楞次定律,转子上产生的磁场会和转子电流上的电流变化相反。转子绕组感应电流的原因是因为旋转的定子磁场,因此为了和转子绕组电流的变化相反,转子和开始往定子旋转磁场的方向旋转。转子会加速到转子感应电流和力矩和转子的机械负载平衡的时候为止。若转子在同步速下旋转,转子和旋转磁场没有相对运动,不会产生感应电流,因此异步电动机的运转速度会比同步转矩略慢一点。真实转速和同步速的转速差相对同步速的比例称为转差率(slip),针对转矩曲线为标准设计B的感应电动机,其转差率会介于0.5%和5.0%之间[25]。异步电动机的特点就是其转子电流和转矩是由感应产生,而不像同步电动机或直流电动机由独立转子激磁电路产生,也不像永磁电动机是用永久磁铁产生磁场[26]。

转差率[编辑]

主条目:转差率

若真实转速等于同步速,转差率为0,若电动机静止,其转差率为1。因为鼠笼式转子的电阻很小,很小的转差率就可以产生转子的大电流,因而产生够大的转矩[32]。在满载时,小功率电动机或是特殊用途的转差率约为5%,若是大功率电动机,转差率会小于1%[33]。若功率不同的电动机直接以机械方式连接相同负载,其转差率的差异可能会造成负载分配的问题[33]。有许多方式可以减少转差率,其中配合变频器的效果会比较好[33]。

转矩[编辑]

四种不同电动机的速度-转矩曲线:A) 单相电动机 B) 多相鼠笼转子电动机, C) 多相深条鼠笼式转子 D) 多相双鼠笼电动机

NEMA Design B 电动机典型的速度-转矩曲线

标准NEMA Design B多相感应电动机的速度-转矩关系如图右。这类电动机适用于像离心泵浦或是风扇等,不强调性能的负载。Design B的电动机的输出会被以下几个转矩范围所限制[25][d]:

  • 崩溃转矩(Breakdown torque,最大转矩):速度-转矩曲线的最高点,额定转矩的175-300%,。
  • 堵转转矩(Locked-rotor torque,电动机静止,转差率为100%的转矩):额定转矩的75-275%。
  • 启动转矩(Pull-up torque):额定转矩的65-190%。

在电动机正常的工作范围内,速度-转矩曲线的曲线会大致为线性,转矩会大致和转差率成正比,因为等效电路中的转子电阻会和转差率成反比

,而在正常的工作范围内,转差率较小,转矩和转子电阻成反比,也就和转差率成正比[34]。不过若负载超过额定转矩,定子及转子漏感的影响比转子电阻

要大,此时转差率变大时,转矩仍会增加,但转矩和转差率的关系不再是线性,斜率也会渐渐变缓。若负载转矩超过崩溃转矩,此时电动机的速度变慢,转差率会变大,而转矩反而会下降,因此电动机会继续减速,直到电动机堵转为止。

启动[编辑]

主条目:电机控制器

交流感应电动机在变动负载下,从完全静止加速到其工作点的暂态解

小功率的异步电动机,可以依其架构分为三种:单相、分相(split-phase)及蔽极(shaded-pole),第三种则是多相的异步电动机。

两极单相的异步电动机,在转差率为100%(零速)时没有转矩。因此需要调整定子设计(例如蔽极)来提供启动转矩。单相异步电动机需要额外的电路(启动绕组),提供电动机的旋转磁场。而单相电动机原来的运转绕组可以让电动机旋转,而正转或是反转则是靠启动绕组的电流方向而定。

蔽极电动机的磁通

在一些较小的单相电动机中,会用将独立的铜线绕组绕住部分磁极的蔽极(shaded pole)方式来达到启动的作用。此绕组产生的电流会远大于供应定子的电流,使蔽极的磁极产生落后的磁场,这就会产生足够的旋转磁场来使电动机启动,这一般会用在台扇或录音机等启动转矩要求不高的应用中,此启动方式效率不高,但是相较于其他的电动机架构或是启动方式,此方式的成本最低。

较大功率的单相电动机是分相(split-phase)的电动机,有第二个定子绕组(启动绕组)提供和主绕组有相位差的电流。此电流可能会透过串联电容器产生,或是透过绕线方式,使其电阻及电感和主绕组不同。电容启动(capacitor-start)设计的电动机,其启动绕组在启动后就断路了,可能是透过安装在电动机轴上的离心开关,或是透过热敏电阻,在温度升高时阻值变大,因此让启动绕组的电流小到其磁场可忽略的程度。电容运转 (capacitor-run)设计的电动机,其第二个定子绕组在运转时也会动作,因此可以提升转矩。电阻启动(resistance start)会用启动电阻串联启动绕组,以产生电抗。

多极感应电动机在静止时也可以产生转矩,通电即可自行起动。而常见的鼠笼式感应电动机启动方式有直接启动、降压电抗器或是自耦变压器启动、Y-Δ切换启动,近来也越来越多的感应电动机是用变频器(VFD)启动[35]。

多极感应电动机的转子铜条可以设计成不同的形状,对应不同的速度-转矩特性。转子铜条内的电流分布会依感应电流的频率而不同。在转子静止时,转子电流的频率和定子电流相同,而且会集中在转子铜条的最外围(集肤效应)。不同的转子铜条除了对应不同的速度-转矩特性外,也可以调整启动时的涌浪电流。

多极电动机在其本质上可以自行起动,但其启动转矩及最大转矩的设计值需要够大,以克服实际负载条件。

若是绕线转子的感应电动机,转子电路会透过集电环连到外部电阻,用电阻来调整加速或是速度控制需要的速度-转矩特性。

速度控制[编辑]电阻[编辑]

在半导体电力电子学发展之前,很难去改变电气频率。当时的感应电动机主要是用在定速的应用。像是电动吊车等应用会用直流电动机驱动,另外一种作法是用有滑环的绕线转子电动机(WRIM,也称为滑环电动机),将转子接到外加的可变电阻来调整速度。不过在绕线转子电动机低速运作时,电阻的功率损失是一大缺点。尤其是在定速的场合下[36]。现今有许多大型的滑环电动机仍在使用,这些系统称为滑环能量回收系统(slip energy recovery system),从转子电路回收能量,整流后,再利用逆变器将电回送到电源。

级联[编辑]

二个滑环电动机的速度可以用级联(cascade)接线的方式控速。其作法是将一个电动机的转子连接到另一个电动机的定子[37][38]。若这二个电动机的转子是以机械方式耦合,二个电动机会以半速运转,早期三相交流火车的火车头(例如FS Class E.333)曾用此一技术。

变频器[编辑]

利用变频器提供不同的电动机频率,所得的速度-转矩曲线

主条目:变频器

变频器驱动的鼠笼感应电动机已在许多的工业应用中,取代了直流电动机或是绕线转子感应电动机。若要在不同负载下,控制感应电动机的速度,最常见有效的方式就是用变频器驱动。以往无法将变频器导入工业应用的问题在于成本以及可靠度,不过在过去三十年来这些问题都已有显著改善,估计新安装的电动机中,会有30%至40%会配合变频器使用[39]。

架构[编辑]

三相四极异步电动机的绕线方式。

异步电动机的定子绕组可通电,产生通过转子的磁场。为了让磁场的分布可以最佳化,绕组会平均分布在定子的槽中。常见的异步电动机有三相及单相的,不过也有二相的异步电动机。理论上异步电动机的相数也可以是其他的正整数,而许多单相电动机会配合启动电容器以产生和电源有90度相位差的电压,因此也可以视为是二相电动机。单相电动机需要一些机制来产生启动需要的旋转磁场。鼠笼式感应电动机的转子铜条会设计为和轴不平行的歪斜式,以避免磁锁效应。

工业界中,标准NEMA及IEC电动机的椢架大小都已标准化,包括轴径、电动机固定孔,以及电动机法兰面等。而开启式防滴(open, drip proof、ODP)可以让空气进入定子内层绕组进行散热,因此定子绕组温度较低,也比较有效率。在相同的功率下,额定转速越低的电动机可能会对应较大的框号[40]。

反向旋转[编辑]

异步电动机要调整转向的方式,会随三相异步电动机或是单相异步电动机而不同。对于三相异步电动机而言,对调任意二条电动机的接线即可以反转。

若是单相分相电动机,改变主绕组及启动电路之间的接线即可反转。不过有些单相分相电动机是设计给特殊的应用,其主绕组及启动电路已在内部连接,因此无法改变转向。单相蔽极电动机有固定的转向,除非将电动机拆下,将定子反向,不然无法改变转向。

功率因数[编辑]

异步电动机的功率因数会依负载而变化,在满载时会到0.85至0.90,在无载时只有0.20[35],变化原因是定子及转子的漏感以及磁化电抗[41]。若是异步电动机直接连接市电,或是经变压器由市电供电。功率因数可以用并联电容器的方式改善,可能是考虑单一电动机连结电容器,也可能是将许多电动机并联,再共用功因电容器。因为经济以及其他因素的考量,电力系统很少会将功因校正到恰好是1的功因[42]。 不过功因电容器有可能会产生谐波电流,需要进行电力系统的分析,以避免功因电容器、变压器以及电路电抗之间的共振[43]。一般会建议用共用电源的功因修正,以避免共振风险,并且简化电力系统分析[43]。

效率[编辑]

满载时电动机的效率约在85%至97%之间,电动机损失大约可以分为以下几项[44]:

  • 摩擦力及风损,5–15%
  • 铁损或铁心损失,15–25%
  • 定子铜损,25–40%
  • 转子铜损,15–25%
  • 杂散损失,10–20%.

许多国家的监管机构已开始订定相关法令,鼓励制造商使用及生产效率较高的电动机。目前已有法令,强制未来在特定设备中使用超高效率(premium-efficiency)异步电动机,也有一些类似的法令正在规划中。相关讯息可参考超高效率。

斯泰因梅茨等效电路[编辑]

斯泰因梅茨(Steinmetz)等效电路也称为T型等效电路,是描述异步电动机的电能输入如何转换为机械能输出的数学工具,是IEEE建议的异步电动机等效电路,可以依此推导许多有关电流、电压、速度、功因及转矩之间的关系。等效电路会以单相来表示多相的异步电动机(在稳态平衡负载时可以用单相来近似)。

斯泰因梅茨等效电路可以表示为以下的成分:

  • 定子电阻及漏电抗({\displaystyle R_{s}}, {\displaystyle X_{s}})。
  • 转子电阻、漏电抗及转差率({\displaystyle R_{r}}, {\displaystyle X_{r}}或{\displaystyle R_{r}^{'}}, {\displaystyle X_{r}^{'}}及{\displaystyle s})。
  • 磁化电抗 ({\displaystyle X_{m}}).

根据阿尔热(Alger)所述,异步电动机可以表示为变压器,其磁路是被定子绕组和转子绕组之间的气隙所隔开[26]。等效电路可以表示为由理想变压器分隔开的定子电路及转子电路,也可以将转子部分转换到定子侧。以下的电路、方程以及参数皆用后者的表示方式[35][42][45][46][47][48]。

斯泰因梅茨等效电路

以下的经验法则大致有效[48][49][50]:

  • 最大电流发生在转子锁死电流(LRC)的负载条件,小于{\displaystyle {V_{s}}/X},针对Design B型电动机,一般会是额定电流的6至7倍[25]
  • 崩溃转矩{\displaystyle T_{max}}发生在{\displaystyle s\approx {R_{r}^{'}/X}}及 {\displaystyle I_{s}\approx {0.7}LRC}使得{\displaystyle T_{max}\approx {K*V_{s}^{2}}/(2X)}
  • 标准B型电动机,定子电抗和转子电抗的比例为[51]
线性感应电动机[编辑]

线性感应电动机的动作原理和旋转型的三相异步电动机相同,用来产生推力,进行直线运动。应用包括磁悬浮、线性推进、线性致动器及液体金属泵浦[53]。

大功率三相异步电动机(异步电动机)(1)

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页