能源开发与新材料应用(纳米纤维素材料在油气田开发中的应用与展望)

文章编号:1009-9603(2020)02-0098-07 DOI:10.13673/j.cnki.cn37-1359/te.2020.02.012

魏 兵1,田庆涛1,毛润雪1,薛 艳1,温洋兵2,蒲万芬1

(1.西南石油大学 油气藏地质与开发工程国家重点实验室,四川 成都 610500;

2.天津科技大学 制浆造纸工程实验室,天津 300457)

魏 兵等

摘要:材料是油气田开发的基础和保障,积极借鉴材料科学的最新进展,提高油气资源开发的经济效益,减小环境保护的压力,是石油工程发展的必然要求和必由之路。作为一种高性能的生物高分子材料,纳米纤维素(NC)具有成本低、来源广、无污染和可再生等优点以及高强度、低密度、强韧性、易修饰等物理性质,被广泛应用于生物医药、食品包装和光电材料等领域。最新研究表明,NC材料在油气田开发领域也具有广阔的应用前景,并逐渐引起中外学者的关注。详细梳理了近年来NC在钻井、压裂和提高采收率等方面的研究进展,深度剖析了实际应用中遇到的问题和解决方法,结合近年来对NC分散液、NC高稳泡沫、NC乳液和NC水凝胶的研究,展望了未来NC材料在油气田开发中的应用潜力和发展方向。

关键词:纳米纤维素;油气田开发;钻井;压裂;提高采收率

中图分类号:TE357 文献标识码:A

Application and prospect of nano-cellulosic materials

in the development of oil and gas field

WEI Bing1,TIAN Qingtao1,MAO Runxue1,XUE Yan1,WEN Yangbing2,PU Wanfen1

(1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum University

Chengdu CitySichuan Province,610500,China 2.Tianjin Key Laboratory of Pulp and Paper

Tianjin University of Science & TechnologyTianjin City,300457,China

Abstract:Materials are the foundation and guarantee for the development of oil and gas reservoirs. Actively drawing on the latest progress in material science,improving the economic benefits of oil and gas resources development,and reducing the pressure on environmental protection are the inevitable requirements and the only way for the development of petroleum engineering. As a high-performance biopolymer material,the nano-cellulosic(NC)material has the advantages of low cost,wide sources,no pollution,and renewable,as well as physical properties such as high strength,low density,strong toughness,and easy modification. It is widely used in the fields of biomedicine,food packaging and photoelectric materials. The latest researches show that the NC material also has broad application prospects in the development of oil and gas reservoirs,and has gradually attracted the attention of Chinese and foreign scholars. The research progress of NC in drilling,fracturing and EOR in recent years has been summarized in detail,and the technical issues and solutions encountered in practical applications have been analyzed in depth. Based on the recent research on NC dispersions,NC high-stability foams,NC emulsions and NC hydrogels,the application potential and development direction of NC materials in oil and gas field development are prospected in the future.

Key words:nano-cellulosic materials;development of oil and gas field;drilling;fracturing;enhanced oil recovery

纤维素是自然界中分布最广、含量最丰富的天然高分子聚合物,广泛存在于木材类、棉类及部分细菌和真菌中[1-2],具有成本低、来源广、无污染和可再生等优点。通过物理或化学方法可将纤维素转化成具有纳米尺度的纳米纤维素(NC),进而赋予其高强度、低密度、强韧性、易修饰等物理性质[3]。这些独特的性质使NC成为极具应用前景的功能高分子材料,可应用于生物医药、食品包装和光电材料等领域[4-5]。根据尺寸和形貌差异,NC主要分为纤维素纳米晶体(cellulose nanocrystal,CNC)和纤维素纳米纤丝(cellulose nanofibril,CNF)[6]两大类。鉴于油气田开发领域对高性能材料的迫切需求,NC材料在石油领域引起了广泛关注。为此,笔者归纳总结中外有关NC在钻井、压裂和提高采收率等方面的最新研究成果,梳理了研究思路,深度剖析了实际应用中遇到的问题,结合在提高采收率方面的研究经验,展望了未来NC材料在油气田开发中的应用前景。

1 NC在钻井液中的应用

钻井液是钻井过程必不可少的流体,其流变性和失水造壁性是保证钻井作业正常进行的两项基本性能。钻井液按连续相性质可分为水基钻井液、油基钻井液和气基钻井液[7]。一般认为,油基钻井液性能较水基钻井液好,但水基钻井液凭借其环境和成本优势,备受青睐。向水基钻井液中加入生物聚合物如淀粉、黄原胶等可调节钻井液的黏度,悬浮固相颗粒,减少滤失。但随着钻井深度的不断加深,储层条件恶劣,上述生物聚合物性能受限,钻井液性能下降。NC以其优异的力学结构和热力学性能,作为钻井液添加剂,可有效提高钻井液的流变性和热稳定性,减少钻井液的滤失量。

NC表面富有羟基,易进行表面修饰,改性后的NC各方面的性能将大幅提升。中外学者用不同的方法修饰了NC的表面,并分析了其在钻井液中的作用效果。研究证实,改性后的NC热稳定性明显比黄原胶高[8],使NC在恶劣的地层条件下,可用于水基钻井液的流变控制。将不同种类的生物胶(瓜尔胶(GG)、刺槐豆胶(LBG)、韦兰胶(WG)和黄原胶(XG))与NC进行复配,研究结果表明,溶液的增黏效果、剪切稀释性能和滤失性与生物胶类型、添加量、NC种类及其表面性质有关[9-11]。

LIU等对CNF进行改性,制备了PADC-Fe3 水凝胶[12]和CNF-g-PAMPS-PBA水凝胶[13],其中PADC-Fe3 水凝胶制备原理如图1所示[12]。作为钻井液的降滤失剂,与常规水凝胶相比,这两种水凝胶的热稳定性和耐盐性更高,能明显减少钻井液的滤失量,在质量分数为6%复合盐溶液配制的钻井液中加入2%的改性CNF-g-PAMPS-PBA水凝胶,160 ℃下老化72 h后,滤失体积从(132.2±2.5) mL下降到(46.3±2.2) mL。这是由于改性后的CNF水凝胶具有空间位阻和疏水缔合作用,有利于防止膨润土颗粒团聚,保持钻井液的胶体稳定性。

2 NC在压裂中的应用

目前中国正在开发或新发现的油藏大部分属于低渗透致密油藏,常规的开采手段无法实现商业化开发规模,需通过储层增产改造技术进行人工造缝,以改善井筒附近油气渗流条件,增大泄油面积,从而提高原油采收率。鉴于储层环境复杂,需要压裂液满足黏度高、摩阻低、易返排、热稳定性高和抗剪切等技术要求[14]。将纤维素等天然高分子化合物加入压裂液可提高压裂液黏度,减少压裂液滤失量,提高支撑剂的悬浮和携带能力。早期未改性的纤维素压裂液存在难配液、热稳定性差、破胶不彻底、有残渣等技术问题。因此,许多学者希望通过对纤维素的功能化处理,提高纤维素材料的性能。孙瑞研究了改性纤维素的流变性质、溶液交联流变过程和降阻性能[15],为其在压裂液中的应用提供了一定的理论支持。马明建立了剪切交联流变动力学方程,来表征稳态剪切和振荡剪切交联过程[16]。段贵府等通过醚化反应对纤维素进行改性,使其制备的压裂液体系具有耐温耐剪抗、破胶彻底无残留、储层伤害低等特点,并成功应用于矿场施工,增产效果显著[17-20]。

能源开发与新材料应用(纳米纤维素材料在油气田开发中的应用与展望)(1)

图1 PADC-Fe3 水凝胶制备原理[12]

Fig.1 Preparation principle of PADC-Fe3 hydrogel[12]

纤维素在压裂液中的应用已研究多年,但其耐温耐盐性能仍然不理想,这也是未来这一应用的攻关方向。目前,纳米尺度纤维(本文指CNC/CNF)在压裂液中的应用鲜有报道,就力学和热力学等方面的性能而言,NC更加优越,今后可拓展NC在压裂液中的应用研究。

3 NC在提高采收率中的应用

经过几十年的开发,中国注水开发油田主体已进入高含水、高采出程度的“双高”生产阶段,原油产量递减速度快,而对石油的需求量却在逐年攀升,对外依存度高,已逼近70%,为保证石油资源供需平衡和国家能源安全,需加快发展提高采收率技术,挖掘“双高”油藏剩余油潜力,转变老油田开发模式。经过几十年的发展,化学驱成为中国应用最为广泛的提高采收率技术[21],而聚合物驱则是化学驱中增产最为成熟的手段。聚合物驱是指通过向地层注入高分子聚合物,增加水相黏度,同时降低水相渗透率,改善流度比,提高波及面积,从而提高原油采收率的一种驱油方式。因生产成本低,制作工艺简单,HPAM是目前油田上用量最大的一种高分子聚合物[22]。但是,HPAM热稳定性、机械稳定性和耐盐性较差,不易生物降解,HPAM中残留的单体AM有毒,对生态环境造成危害[23]。鉴于苛刻的储层环境和环保压力,亟需开发一种高性能、低成本且绿色环保的高分子材料替代HPAM。因此,中外学者尝试将NC应用于化学驱技术中,以期解决当前驱油剂存在的上述缺点。

3.1 NC分散液

AADLAND等研究了温度、pH和时间对CNC分散液稳定性的影响规律,探讨了CNC在多孔介质中的注入性、运移行为和滞留特征,分析了其提高采收率机理和作为“绿色”驱油剂的可行性[24-27]。在低温、低矿化度条件下,CNC分散液在多孔介质中注入性良好,多孔介质中的滞留以吸附为主。在高温或高矿化度条件下,CNC进入多孔介质后,颗粒发生聚集,出现log-jamming现象(即两个或两个以上的颗粒以略小于孔喉的尺寸一起到达孔喉时,堵塞孔喉,大颗粒凝聚在一起难以通过岩心),封堵高渗透通道,使后续驱替液转向低渗透区,扩大波及体积,上述研究成果为NC“绿色”驱油剂提高采收率提供理论基础。

虽然NC具有优异的物理性能,但未经改性的NC对电解质很敏感。电解质压缩双电层,降低NC链间的排斥力[28],促进NC在电解质溶液中絮凝和沉淀,造成分散体系失稳。为此,笔者对CNF进行表面处理,引入功能基团,改性后的NC-KY在盐水中具有良好的分散性,同时具有显著的增稠性和剪切稀释性[29]。为进一步提高NC-KY的物理性能,将AMPS(2-丙烯酰胺-2-甲基丙烷磺酸)和疏水基团同时接枝在NC表面,得到NC-KYSS,其耐盐性和热稳定性得到极大的提升[30-31],表1为三种NC分散液的物理性质[30]。

通过对比分析NC,NC-KY和NC-KYSS三种NC分散液的耐盐性、热稳定性和流变性等物理性能,发现NC-KYSS分散液的物理性能最佳,主要是因为NC-KYSS表面同时含有AMPS和疏水基团,使其具有亲水和亲油的两亲特征。由于NC-KYSS能“楔形”吸附于岩石表面,在驱油过程中更易剥离油膜,使岩石表面由亲油向亲水反转,改变岩石表面润湿性。

通过物理模拟实验,从宏观尺度研究了NC-KYSS分散液的驱油效率和驱油机理。与文献报道一致,NC-KYSS分散液会优先进入高渗透区域,降低高渗透区域渗透率,使后续驱替液转向低渗透区域,提高波及体积[32]。利用微观可视化模型直接观察了NC-KYSS在孔隙尺度的渗流特征,如图2所示[33]。实验发现,NC-KYSS可通过乳化原油、拖拽油滴等机理提高原油采收率,也可“楔形”吸附于岩石表面,剥离油膜,提高洗油效率[33]。

魏兵等前期研究发现,NC通过表面功能化处理有望成为一种绿色驱油体系,但距矿场应用还有很大距离,主要问题包括2个方面:①材料成本和用量。②苛刻油藏中NC的分散性和运移,这也是固相纳米材料(SiO2,ZnO,Fe3O4等)面临的瓶颈问题。鉴于上述问题,魏兵等积极探索了NC作为添加剂在构建高稳泡沫、乳液和水凝胶中的应用[34]。

表1 NC和NC-KY及NC-KYSS的物理性质[30]

Table1 Physical properties of NC,NC-KY and NC-KYSS[30]

能源开发与新材料应用(纳米纤维素材料在油气田开发中的应用与展望)(2)

能源开发与新材料应用(纳米纤维素材料在油气田开发中的应用与展望)(3)

图2 NC-KYSS分散液微观驱油机理[33]

Fig.2 Micro-displacement mechanism of NC-KYSS dispersion[33]

3.2 NC高稳泡沫

随着注水开发的不断深入,储层非均质性严重,舌进和指进现象明显,低渗透储层赋存大量剩余油得不到有效动用,因此调剖成为提高采收率的一项关键技术。泡沫作为驱替相在孔隙中运移时,毛管压力捕集的气泡会产生附加流动阻力,有效降低驱替相和被驱替相的流度比,缓解舌进和指进现象,扩大流体的波及体积。所以,泡沫体系的稳定性直接决定了泡沫驱提高采收率的效果。

通过分子设计,修饰和调控NC的表面结构,促进NC与表面活性剂(起泡剂)在泡沫液膜上的相互作用[35],提高液膜的储液能力,降低液膜排液速度,理论上可改善表面活性剂泡沫的稳定性[36]。

笔者将前期构建的三类NC引入到泡沫液膜中,通过静态和动态评价,从宏观—介观—微观尺度深入研究了体相泡沫的稳定性、液膜性质、携液/排液、气泡粗化、气体在液膜上渗透性、液膜夹断-分离行为及NC与表面活性剂的构效关系等一系列问题。研究发现,NC高稳泡沫液膜较厚,析液速率慢,泡沫寿命可延长5倍;经过孔喉时,NC高稳泡沫产生较高的局部毛管压力,气泡破裂后产生更密更小的气泡(图3)[37],有利于向储层深部运移,实现深部调剖[37-39]。

为进一步简化制备工艺,降低材料成本,笔者

能源开发与新材料应用(纳米纤维素材料在油气田开发中的应用与展望)(4)

图3 NC高稳泡沫和表面活性剂泡沫的液膜夹断-分离行为[37]

Fig.3 Liquid film snap-off of surfactant foam and NC high stability foam[37]

成功制备一种保留木素成分和羧基的特殊功能性NC材料(L-CNF),用于构建高稳泡沫。室内评价结果表明,由于重力作用,L-CNF降低了体系的起泡能力,但L-CNF与表面活性剂之间的疏水作用形成了黏弹性界面,有效抑制了气泡粗化、析水和气泡聚并。泡沫体积稳定性指数测定结果表明,加入L-CNF后,泡沫的稳定性是仅用表面活性剂泡沫的5倍,L-CNF-3高稳泡沫体系的析液半衰期增加了50%[40-41]。

3.3 NC乳液和NC水凝胶

乳液中加入CNF,可观察到CNF吸附在油水界面,覆盖率可达63.1%,表面负电荷在相邻液滴之间产生较强的静电排斥,抑制液滴聚并,提高乳液稳定性[42-43]。CNC乳液在填砂管中运移时,由于范德华力和氢键作用,乳液液滴可形成网状结构,乳液的驱替压力梯度较常规乳液高两个数量级,具有较强的调剖能力[44]。

NC具有高长径比、高比表面积和高结晶度等特性,所以广泛用于增强复合材料的力学性能。以NC为原材料,通过物理或化学交联形成具有三维网络结构的水凝胶,具有较强的凝胶强度、吸水性和耐盐性,可用于药物运输[45]、创伤敷药[46]、组织工程支架[47]和有色污水处理[48]等领域,但在油气田开发中的应用却鲜有报道。

鉴于油气田开发中对高强度、高韧性、智能和环境友好型凝胶体系的需求,魏兵等基于功能化NC设计研发了CNC和CNF互穿式水凝胶(图4)。NC通过物理交联作用,给凝胶体系“穿上”钢筋,NC与凝胶基质相互贯穿,构建三维网络结构水凝胶,利用NC的力学性能调和凝胶的粘性和弹性,改善凝胶的机械性能和热稳定性,赋予凝胶优异的力学性能。将干燥后的凝胶粉碎造粒,筛分成不同粒径的微凝胶颗粒,制备非均相分散体系,可用于裂缝性油藏调控,微凝胶可降低大裂缝的导流能力,调和裂缝治理与利用的矛盾,NC的骨架作用可保证裂缝调控的有效期,减小储层伤害。在开发中后期提高采收率过程中,实现水、气等驱替能量的均衡波及,改善水平井剖面的动能程度,提高资源动用效率。

4 结论与展望

随着中国能源需求的不断增长,石油勘探开发的力度逐年加大,传统的油田化学品正面临苛刻油藏条件的巨大挑战,存在适应性差、高温失稳失效、储层伤害等瓶颈问题,亟需开发高性能、低成本、无伤害的新型材料和油田化学品,以满足未来中国油气田高速发展的技术和市场需求。

NC是一种储量大、来源广且性能优异的生物高分子材料,已在食品、化工、医药等领域工业化应用。根据不同的技术要求,通过NC的表面设计和修饰,理论上NC可应用于油气田开发的各个环节。但就目前研究进展看,仍存在一些技术瓶颈问题有待解决,在某些环节暂时还不能投入矿场规模化应用。NC在压裂液中的应用鲜有报道,主要是受成本控制,且NC在高矿化度下的热稳定性需要进一步提高。NC分散液和NC乳液在多孔介质中运移时存在聚集和堵塞风险,作为驱油体系不现实,可尝试小剂量控水稳油。NC高稳泡沫和NC水凝胶由于性能优、成本低、环境友好极具应用前景,可应用于“双高”油藏稳油控水、裂缝性油藏防窜、致密油藏裂缝均衡调控等方面。此外,NC也可作为降滤失剂应用于钻井液,初步研究表明,其降滤失性能优异。

能源开发与新材料应用(纳米纤维素材料在油气田开发中的应用与展望)(5)

图2 NC-KYSS分散液微观驱油机理[33]

Fig.2 Micro-displacement mechanism of NC-KYSS dispersion[33]

参考文献

[1] GIESE M,BLUSCH L K,KHAN M K,et al.Functional materials from cellulose-derived liquidcrystal templates[J].Angewandte Chemie Intenational Edition,2015,54(10):2 888-2 910.

[2] ZHAI T,ZHENG Q,CAI Z,et al.Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane[J].ACS Applied Materials & Interfaces,2015,7(13):7 436-7 444.

[3] 邹竹帆,杨翔皓,王慧,等.酸水解法制备纤维素纳米晶体的研究进展[J].中国造纸,2019,38(3):61-69.

ZOU Zhufan,YANG Xianghao,WANG Hui,et al.Advance in preparation of cellulose nanocrystals by acid hydrolysis[J].China Pulp & Paper,2019,38(3):61-69.

[4] KLEMM D,KRAMER F,MORITZ S,et al.Nanocelluloses:a new family of nature-based materials[J].Angewandte Chemie International Edition,2011,50(24):5 438-5 466.

[5] 杜海顺.甲酸水解法制备纳米纤维素及其自组装膜的表征[D].天津:天津科技大学,2017.

DU Haishun.Preparation and characterization of nanocellulose and self-assembly nanocellulose films based on formic acid hydrolysis[D].Tianjin:Tianjin University of Science & Technology,2017.

[6] 杜海顺,刘超,张苗苗,等.纳米纤维素的制备及产业化[J].化学进展,2018,30(4):448-462.

DU Haishun,LIU Chao,ZHANG Miaomiao,et al.Preparation and industrialization status of nanocellulose[J].Progress in Chemistry,2018,30(4):448-462.

[7] 陈平.钻井与完井工程[M].2版.北京:石油工业出版社,2011:47-74.

CHEN Ping.Well drilling and completion engineering[M].2nd ed.Beijing:Petroleum Industry Press,2011:47-74.

[8] HALL L J,DEVILLE J P,ARAUJO C S,et al.Nanocellulose and its derivatives for high-performance water-based fluids[C].SPE 184576,2017.

[9] HALL L J,DEVILLE J P,SANTOS C M,et al.Nanocellulose and biopolymer blends for high-performance water-based drilling fluids[C].SPE 189577,2018.

[10] LI M C,REN S X,ZHANG X Q,et al.Surface-chemistry-tuned cellulose nanocrystals in a bentonite suspension for water-based drilling fluids[J].ACS Applied Nano Materials,2018,1(12):7 039-7 051.

[11] 程晓燕.聚阴离子纤维素与纳米纤维素的协同降滤失效果研究[D].北京:北京理工大学,2016.

CHENG Xiaoyan.Study on the synergying fluid loss reduction effect of polyanionic cellulose and nanocellulose[D].Beijing:Beijing Institute of Technology,2016.

[12] LIU X L,QU J L,WANG A,et al.Hydrogels prepared from cellulose nanofibrils via ferric ion-mediated crosslinking reaction for protecting drilling fluid[J].Carbohydrate Polymers,2019,212:67-74.

[13] LIU X L,WANG A,WANG C P,et al.Preparation and performance of salt tolerance and thermal stability cellulose nanofibril hydrogels and their application in drilling engineering[J].PBM Cellulose Nanofibril Hydrogel,2019,4(2):10-19.

[14] 李颖川.采油工程[M].2版.北京:石油工业出版社,2009:201-230.

LI Yingchuan.Production engineering[M].2nd ed.Beijing:Petroleum Industry Press,2009:201-230.

[15] 孙瑞.改性纤维素基压裂液及流变学研究[D].上海:华东理工大学,2018.

SUN Rui.Study on the preparation and rheology of modified cellulose fracturing fluids[D].Shanghai:East China University of Science and Technology,2018.

[16] 马明.改性纤维素压裂液交联流变动力学研究[D].上海:华东理工大学,2016.

MA Ming.Study on the crosslinking rheo-kinetics of modified cellulose fracturing fluids[D].Shanghai:East China University of Science and Technology,2016.

[17] 段贵府,牟代斌,舒玉华,等.无残渣纤维素压裂液在苏里格东区致密气藏的应用[J].科学技术与工程,2015,15(3):200-203.

DUAN Guifu,MOU Daibin,SHU Yuhua,et al.Application of residue-free cellulose fracturing fluid in eastern Sulige tight gas field[J].Science Technology and Engineering,2015,15(3):200-203.

[18] 段瑶瑶,明华,代东每,等.纤维素压裂液在苏里格气田的应用[J].特种油气藏,2014,21(6):123-125.

DUAN Yaoyao,MING Hua,DAI Dongmei,et al.Application of cellulose fracturing fluid in Sulige Gas Field[J].Special Oil & Gas Reservoirs,2014,21(6):123-125.

[19] 明华,邱晓惠,王肃凯,等.新型低分子纤维素压裂液的研究及其在致密油气藏的应用[J].精细石油化工,2016,33(5):15-18.

MING Hua,QIU Xiaohui,WANG Sukai,et al.The study of a new low-molecular-weight cellulose fracturing fluid and application in tight reservoirs[J].Speciality Petrochemicals,2016,33(5):15-18.

[20] 明华,舒玉华,卢拥军,等.一种速溶无残渣纤维素压裂液[J].油田化学,2014,31(4):492-496.

MING Hua,SHU Yuhua,LU Yongjun,et al.A cellulose fracturing fluid with instant solution and non-residue[J].Oilfield Chemistry,2014,31(4):492-496.

[21] 叶仲斌.提高采收率原理[M].2版.北京:石油工业出版社,2007:1-30.

YE Zhongbin.Principle of enhanced oil recovery[M].2nd ed.Beijing:Petroleum Industry Press,2007:1-30.

[22] SHENG J J,LEONHARDT B,AZRI N.Status of polymer-flooding technology[C].SPE 174541,2015.

[23] SHANKER R,SETH P K.Toxic effects of acrylamide in a freshwater fish,Heteropneustes fossilis[J].Bulletin of Environmental Contamination and Toxicology,1986,37(1):274-280.

[24] AADLAND C R,DZIUBA J C,HEGGSET B E,et al.Identification of nanocellulose retention characteristics in porous media[J].Nanomaterials,2018,8(7):547-569.

[25] AADLAND C R,JAKOBSEN D T,HEGGSET B E,et al.High-temperature core flood investigation of nanocellulose as a green additive for enhanced oil recovey[J].Nanomaterials,2019,9(5):665-691.

[26] MOLNES S N,MAMONOV A,PASO K G,et al.Investigation of a new application for cellulose nanocrystals:a study of the enhanced oil recovery potential by use of a green additive[J].Cellulose,2018,25(4):2 289-2 301.

[27] MOLNES S N,TORRIJOS I P,STRAND S,et al.Sandstone injectivity and salt stability of cellulose nanocrystals(CNC)dispersions-Premises for use of CNC in enhanced oil recovery[J].Industrial Crops and Products,2016,93:152-160.

[28] KUSANAGI K,MURATA S,GOI Y,et al.Application of cellulose nanofiber as environment-friendly polymer for oil development[C].SPE 176456,2015.

[29] WEI B,LI Q Z,JIN F Y,et al.The potential of a novel nanofluid in enhancing oil recovery[J].Energy & Fuels,2016,30(4):2 882-2 891.

[30] LI Q Z,WEI B,LU L M,et al.Investigation of physical properties and displacement mechanisms of surface-grafted nano-cellulose fluids for enhanced oil recovery[J].Fuel,2017,207:352-364.

[31] LI Q Z,WEI B,XUE Y,et al.Improving the physical properties of nano-cellulose through chemical grafting for potential use in enhancing oil recovery[J].Journal of Bioresources and Bioproducts,2016,1(4):186-191.

[32] WEI B,LI Q Z,WANG Y Y,et al.An experimental study of enhanced oil recovery EOR using a green nano-suspension[C].SPE 190283,2018.

[33] WEI B,LI Q Z,NING J,et al.Macro-and micro-scale observations of a surface-functionalized nanocellulose based aqueous nanofluids in chemical enhanced oil recovery(C-EOR)[J].Fuel,2019,236:1 321-1 333.

[34] WEI B,LI Q Z,LI H,et al.Green EOR utilizing well-defined nano-cellulose based nano-fluids from flask to field[C].SPE 188174,2017.

[35] WANG Q,MENG G H,WU J N,et al.Novel robust cellulose-based foam with pH and light dual-response for oil recovery[J].Frontiers of Materials Science,2018,12(2):118-128.

[36] YIN X,KANG W L,SONG S Y,et al.Stabilization mechanism of CO2 foam reinforced by regenerated cellulose[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,555:754-764.

[37] WEI B,WANG Y Y,WEN Y B,et al.Bubble breakup dynamics and flow behaviors of a surface-functionalized nanocellulose based nanofluid stabilized foam in constricted microfluidic devices[J].Journal of Industrial and Engineering Chemistry,2018,68:24-32.

[38] WEI B,LI H,LI Q Z,et al.Stabilization of foam lamella using novel surface-grafted nanocellulose-based nanofluids[J].Langmuir,2017,33(21):5 127-5 139.

[39] WEI B,LI H,LI Q Z,et al.Investigation of synergism between surface-grafted nano-cellulose and surfactants in stabilized foam injection process[J].Fuel,2018,211:223-232.

[40] WEI B,WANG Y Y,CHEN S G,et al.Relation between chemical composition of a green nanofluid and its foam film stabilization for robust foam injection EOR[C].SPE 193633,2019.

[41] WEI B,WANG Y Y,MAO R X,et al.Design of nanocellulose fibrils containing lignin segment(L-NCF)for producing stable liquid foams as“green”flooding agents for oil recovery[J].ACS Sustainable Chemistry & Engineering,2019,7(13):11 426-11 437.

[42] HUAN S Q,YOKOTA S,BAI L,et al.Formulation and composition effects in phase transitions of emulsions costabilized by cellulose nanofibrils and an ionic surfactant[J].Biomacromolecules,2017,18(12):4 393-4 404.

[43] WEI B,NING J,MAO R X,et al.Rational design and fabrication of an alkali-induced O/W emulsion stabilized with cellulose nanofibrils(CNFs):implication for eco-friendly and economic oil recovery application[J].Soft Matter,2019,15(19):4 026-4 034.

[44] PANDEY A,TELMADARREIE A,TRIFKOVIC M,et al.Cellulose nanocrystal stabilized emulsions for conformance control and fluid diversion in porous media[C].SPE 191609,2018.

[45] MAURICIO M R,DA COSTA P G,HARAGUCHI S K,et al.Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery[J].Carbohydrate Polymers,2015,115:715-722.

[46] LIU J,CHINGA-CARRASCO G,CHENG F,et al.Hemicellulose-reinforced nanocellulose hydrogels for wound healing application[J].Cellulose,2016,23(5):3 129-3 143.

[47] DOMINGUES R M A,SILVA M,GERSHOVICH P,et al.Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications[J].Bioconjugate Chemistry,2015,26(8):1 571-1 581.

[48] 张碟,蔡杰,徐威,等.纤维素纳米纤维水凝胶的构筑与吸附性能研究[J].林业工程学报,2019,4(2):92-98.

ZHANG Die,CAI Jie,XU Wei,et al.Synthesis,characterization and adsorption property of cellulose nanofiber-based hydrogels[J].China Forestry Science and Technology,2019,4(2):92-98.

编辑 常迎梅

—————————————

收稿日期:2019-11-01。

作者简介:魏兵(1983—),男,山东济宁人,教授,博导,从事非常规油藏提高采收率技术和理论研究。E-mail:bwei@swpu.edu.cn。

基金项目:国家自然科学基金面上项目“基于纤丝纳米材料(CNF)高稳泡沫驱体系的构筑及液膜夹断-分离行为研究”(51974265),国家自然科学基金之青年科学基金项目“高温高盐环境中纳米纤维素/有机碱杂化体系的构建及油水界面行为研究”(51804264)和“生物活性纤维素纳米纤丝的构建及其抗菌抗病毒作用与机制研究”(51603174)。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页