男性雌性激素旺盛和肥胖(男性缺乏雌性激素)

男性雌性激素旺盛和肥胖(男性缺乏雌性激素)(1)

一般的男性健身者对雌激素的认知主要在雌化、储水、拮抗睾酮等方面。虽然也隐约知道男性需要一些雌激素,但是大多数男性健身者一般还是认为男性要尽量减少雌激素水平。

其实雌激素对男性的作用很多,比如避免肥胖和保护肌肉。在中文互联网上,我还没有见过谁详细的写过这个话题,我们今天就专门讲下。


一、雌激素有助于避免男性肥胖

肥胖是一种全球性的疾病,是一个越来越严重的公共卫生问题。全球超重和肥胖人口超过20亿,而且这个数字还在不断增加[1] [2] [3]。注意,肥胖与基因有很大的关系[4] [5] [6],也跟激素有关。

人类是近20年才知道雌激素能保护男性、减少肥胖的。2006年,Jones等人首次发现并报道,男性如果缺乏雌激素,会导致肥胖[7]。

众所周知,女性体内的雌激素主要来自卵巢,而男性体内的雌激素仅有约15%来自睾丸[8],而大部分主要来自芳香酶。芳香酶主要存在于脂肪组织中,负责将雄性激素转化为雌激素。

如果芳香酶的数量或者功能不正常,男性就无法获得足够的雌激素。Jones等人发现7名男性因为发生了CYP19基因的外显子突变,导致他们体内的芳香酶功能障碍,因此它们体内的雌激素水平低得几乎检测不到,而且他们的睾酮水平中等偏高。

男性雌性激素旺盛和肥胖(男性缺乏雌性激素)(2)

图1

『雌激素水平极低、雄激素水平中等略高』,许多男网友可能觉得这是好事,因为他们都听说了『雌激素过多导致男性乳房发育、磁化、肥胖』的说法。

然而,体内雌激素水平极低的这7名男性身上有一大堆病,比骨骼发育迟缓、骨质酥松、肥胖、胰岛素抵抗,还有广大男同胞最不想发生的:生殖功能降低

为了验证这个问题是否偶然,Jones等人进一步的观察,发现芳香酶基因敲除的雄性小鼠身上也观察到了相似的情况;通过这些观察他们证实,雌激素在调节哺乳动物的体重、肥胖和葡萄糖体内平衡中,发挥了关键性的保护作用。

甚至有些研究认为,雄性动物『缺乏雌激素』可能比『缺乏雄激素』更糟糕[9],『缺乏雌激素』可导致雄性动物的体脂比其他正常雄性动物翻倍[10] [11]。

Heine等人用基因敲除技术制造了雌性激素受体敲除的雄性小鼠[12](KO小鼠),这些小鼠体内能产生雌性激素,但它们所有的细胞上都没有雌激素受体,相当于变相失去了所有雌激素。

KO雄性小鼠随年龄增长体内的白色脂肪组织越来越多,到270-360日龄时,与正常小鼠相比,KO小鼠的附睾、肾脏周围和腹股沟的脂肪细胞增大20%、脂肪细胞数量增多82-168%、脂肪组织重量增多139%-185%

男性雌性激素旺盛和肥胖(男性缺乏雌性激素)(3)

图2:30和90日龄两组小鼠脂肪量对比

男性雌性激素旺盛和肥胖(男性缺乏雌性激素)(4)

图3:180和270-360日龄两组小鼠脂肪量对比

值得一提的是,该研究中的普通雄性小鼠和KO雄性小鼠摄入的热量是一样的。

这句话让会让许多减肥只考虑总热量的人后背发凉,因为他们一直都是错的,他们一直以为减肥单纯就是吃和运动的的问题,就单纯只是总热量的问题。

男性雌性激素旺盛和肥胖(男性缺乏雌性激素)(5)

图4

这是一个反驳『胖瘦只看总热量』的典型证据,在摄入热量一样的情况下,KO雄性小鼠比正常雄性小鼠胖多了(图4)。

它们摄入热量相同但却胖的多的原因不完全清楚,但研究者认为是ko雄性小鼠日常消耗的热量更少,大约少了11%(以及肌肉量减少)。

让雄性小鼠失去雌激素信号,除了敲除它们的雌激素受体基因,还可以敲除他们的芳香酶基因,因为雄性哺乳动物的大部分雌激素来自于脂肪细胞内的芳香酶。

脂肪细胞内的Cyp19基因编码出芳香酶,只要破坏了这个基因,小鼠就不能产生芳香酶[13];Jones等人利用这种方式获得了芳香酶敲除小鼠(ArKO)[14],它们基本不能合成内源性雌激素。

结果跟Heine等人[12]的研究相互支持,芳香酶敲除的小鼠(ArKO小鼠),不管雄性还是雌性,都变得更胖了。在1岁的年龄下,对于肾脏周围的脂肪积累(图5),ArKO雄性小鼠平均213.2g,普通小鼠平均105.8g,差距几乎一倍;

男性雌性激素旺盛和肥胖(男性缺乏雌性激素)(6)

图5

性腺周围的脂肪细胞大小(图6),也是ArKO小鼠(B)明显比普通小鼠(A)更大;

男性雌性激素旺盛和肥胖(男性缺乏雌性激素)(7)

图6

在全身脂肪总量方面(图7),ArKO小鼠(黑柱)明显比普通小鼠(白柱)更多,不管雄性和雌性都是如此;并且雄性ArKO小鼠的肥胖似乎比雌性更严重。

男性雌性激素旺盛和肥胖(男性缺乏雌性激素)(8)

图7

对于肝脏的脂肪堆积(图8),ArKO小鼠明显比普通小鼠更严重;下图是对这些小鼠尸检的肝脏切片,肝细胞本身是恩红色,其中白色部分就是肝脏的脂肪堆积。

男性雌性激素旺盛和肥胖(男性缺乏雌性激素)(9)

图8

对于ArKO小鼠肥胖的原因,作者强调:

excess body fat in the estrogen-insufficient ArKO mice was not due to hyperphagia or reduced resting energy expenditure, but was associated with decreased lean mass and reduced spontaneous physical activity.

雌激素不足的ArKO小鼠体内多余的脂肪,不是由于摄食过量导致的,而是因为瘦体重(肌肉组织减少)、静息能量消耗减低、身体活动减少造成的。


二、雌激素通过中枢神经调节体重和能量代谢

文献表明,雌激素信号通过通过中枢神经机制[15] [16]。

下丘脑是食欲和能量消耗以及生殖行为的主要调节部位[17] [18],下丘脑也有丰富的雌激素受体,特别是在弓状核、室旁核和腹内侧核[15] [19] [20];而且,中枢神经系统中,如星型胶质细胞和神经元,具有将胆固醇合成雌激素所必须的酶[21]。

有趣的是,给雄性小鼠喂食大量的植物雌激素,尽管它们的食欲增加,但肥胖率却下降了[22]。

这可能是因为雌激素信号影响了下丘脑,比如Ogawa等人观察到切除睾丸后注射雌激素的雄性小鼠自主日常活动增加[23](跑滚轮)——这与Heine等人[12]报告说雌激素不足的雄性小鼠瘦体重和身体活动减少相吻合。


三、雌激素维持胰岛敏感性,保护骨骼肌

几乎所有人都知道雄性激素(睾酮类)对骨骼肌的重要保护作用。但是极少有网友知道雌激素也对肌肉具有保护作用,上面的许多研究中都提到了这一点。

首先是Jones等人[7]报道雌激素在调节哺乳动物的葡萄代谢中发挥了关键性的保护作用,然后Heine等人用基因敲除技术制造的雌性激素受体敲除的雄性小鼠[12](KO小鼠)的血糖和血液胰岛素水平更高(图9)。

男性雌性激素旺盛和肥胖(男性缺乏雌性激素)(10)

图9

消化过程中,食物(碳水化合物)从小肠以葡萄糖的形式吸收入血,再在胰岛素[24] [25]的帮助下进入各器官;胰岛素从血液到达肌细胞表面后[26]与受体结合[27] [28] [29] [30],引发一系列细胞内的生物化学信号[31] [32],促使葡萄糖转运蛋白往细胞表面移动,细胞摄取葡萄糖。

男性雌性激素旺盛和肥胖(男性缺乏雌性激素)(11)

图10

如果骨骼肌发生了胰岛抵抗,血糖无法顺利进入骨骼肌,就会滞留在血液中,引起血糖升高;同时,身体会分泌更多的胰岛素来促进血糖进入骨骼肌(和其他器官)。所以血糖和血浆胰岛素都升高,就是胰岛抵抗的标志

胰岛素的作用对增肌来说非常重要。

  • 抗阻训练后的肌肉增长具有胰岛素依赖性,有足够胰岛素蛋白合成速率显著增加[33];
  • 使用抑制胰岛素分泌的药物,小鼠比目鱼肌、腓肠肌和肋上肌蛋白合成明显减少[34];
  • 使用抗胰岛素抗体,几乎完全阻断了氨基酸对肌蛋白质合成的刺激效果[35];
  • 胰岛素还能与氨基酸协同作用,产生1 1>2的效果,放大蛋白质合成的效率[36][37];
  • 胰岛素通过刺激一氧化氮合成来扩张毛细血管[38],肌细胞得到更多的血流量[39][40][41]和营养物质;
  • 胰岛素抵抗则意味着肌细胞摄取的营养减少[42][43][44][45];
  • 2型肌纤维作为人体增肌的主力[46],它以糖酵解为主要能量[46]。

胰岛抵抗是肌肉杀手。

胰岛抵抗是肌肉杀手。

胰岛抵抗是肌肉杀手。

重要的事说三遍。

回到本文,雌激素对男性(和女性)来说,具有维持胰岛敏感性、保护骨骼肌的作用,这解释了为什么绝经前的女性糖尿病发病率低于男性[53] [54]。

作为对比,喂食高脂肪饮食导致雄性动物的胰岛敏感性降低40-50%[55] [56],但雌性动物和人类女性受益于雌激素的代谢保护作用,胰岛抵抗程度较少[57] [58] [59] [60];在医学上也观察到,卵巢切除会损害肌肉葡萄糖摄取和储存,会导致肌肉减少[61] [62]。

雌激素对胰岛敏感性和肌肉的保护机制很复杂,而且是多样化的:

  • 雌激素诱导AMPK激活[63][64];
  • 雌激素维持葡萄糖转运蛋白数量[65](Glut4);
  • 雌激素促进Glut4在运动后数量上调[66][67];
  • 雌激素激活肌肉合成代谢信号(Akt信号)[68][69][70];
  • 雌激素通过FOXO1抑制肌肉分解的酶(泛素连接酶)[71]。

这些内容比较深,我们在本文就不铺开说了。

有趣的是,雌激素对男性(和女性)体脂的控制作用和肌肉的保护作用,可能解释了为什么女性热衷于减肥。雌激素对于女性肥胖具有抑制作用:失去雌激素的保护,雌性动物和人类绝经后,胰岛敏感性急剧下降、体脂和炎症水平增加[72] [73]。

所以,也许从潜意识里,女性对瘦的追求,其实是一种潜意识里对青春(雌激素控制体脂)的追求,或者说是挽留;她们希望通过运动减肥,把自己变成年轻时有丰富雌激素水平的苗条状态。


Referencs

1. ^ Organization WH. Obesity: preventing and managing the global epidemic. 2000

2. ^Van Vliet-Ostaptchouk JV, Snieder H, Lagou V. Gene–lifestyle interactions in obesity. Curr Nutr Rep. 2012;1(3):184–96.

3. ^Reddon H, Gerstein HC, Engert JC, Mohan V, Bosch J, Desai D, et al. Physical activity and genetic predisposition to obesity in a multiethnic longitudinal study. Sci Rep. 2016;6(1):1–10.

4. ^ Albuquerque D, Manco L, Nóbrega C. Genetics of human obesity. Obesity: Springer; 2016. pp. 87–106.

5. ^Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387(6636):903–8.

6. ^ Albuquerque D, Nóbrega C, Manco L, Padez C. The contribution of genetics and environment to obesity. Br Med Bull. 2017;123(1):159–73.

7. ^abJones ME, Boon WC, Proietto J, Simpson ER. Of mice and men: the evolving phenotype of aromatase deficiency. Trends Endocrinol Metab. 2006;17:55–64.

8. ^Hemsell DL, Grodin JM, Brenner PF, Siiteri PK, MacDonald PC. Plasma precursors of estrogen. II. Correlation of the extent of conversion of plasma androstenedione to estrone with age. J Clin Endocrinol Metab. 1974;38:476–479.

9. ^Fan W, Yanase T, Nomura M, Okabe T, Goto K, Sato T, Kawano H, Kato S, Nawata H. Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes. 2005;54:1000–1008.

10. ^Cooke PS, Heine PA, Taylor JA, Lubahn DB. The role of estrogen and estrogen receptor-alpha in male adipose tissue. Mol Cell Endocrinol. 2001;178:147–154.

11. ^Ohlsson C, Hellberg N, Parini P, Vidal O, Bohlooly-Y M, Bohlooly M, Rudling M, Lindberg MK, Warner M, Angelin B, Gustafsson JA. Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice. Biochem Biophys Res Commun. 2000;278:640–645.

12. ^abcdHeine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci U S A. 2000;97:12729–12734.

13. ^Fisher C R, Graves K H, Parlow A F, Simpson E R. Proc Natl Acad Sci USA. 1998;95:6965–6970.

14. ^Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci U S A. 2000;97:12735–12740.

15. ^abBrown LM, Clegg DJ. Central effects of estradiol in the regulation of food intake, body weight, and adiposity. J Steroid Biochem Mol Biol. 2010;122:65–73.

16. ^Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 2013;34:309–338.

17. ^Abdelgadir SE, Resko JA, Ojeda SR, Lephart ED, McPhaul MJ, Roselli CE. Androgens regulate aromatase cytochrome P450 messenger ribonucleic acid in rat brain. Endocrinology. 1994;135:395–401.

18. ^Roselli CE, Liu M, Hurn PD. Brain aromatization: classic roles and new perspectives. Semin Reprod Med. 2009;27:207–217.

19. ^Merchenthaler I, Lane MV, Numan S, Dellovade TL. Distribution of estrogen receptor alpha and beta in the mouse central nervous system: in vivo autoradiographic and immunocytochemical analyses.

20. ^Simerly RB, Chang C, Muramatsu M, Swanson LW. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study.

21. ^Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev. 2010;62:155–198.

22. ^Cederroth CR, Vinciguerra M, Kühne F, Madani R, Doerge DR, Visser TJ, Foti M, Rohner-Jeanrenaud F, Vassalli JD, Nef S. A phytoestrogen-rich diet increases energy expenditure and decreases adiposity in mice. Environ Health Perspect. 2007;115:1467–1473.

23. ^Ogawa S, Chan J, Gustafsson JA, Korach KS, Pfaff DW. Estrogen increases locomotor activity in mice through estrogen receptor alpha: specificity for the type of activity. Endocrinology. 2003;144:230–239.

24. ^Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic extracts in the treatment of diabetes mellitus. Can Med Assoc J. 1922;12:141–146.

25. ^Karamitsos D.T. 2011. The story of insulin discovery. Diabetes Res. Clin. Pract. 93(Suppl 1):S2–S8. 10.1016/S0168-8227(11)70007-9

26. ^Gavin JR, et al. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci USA. 1974;71:84–88.

27. ^Freychet P, Roth J, Neville DM., Jr Insulin receptors in the liver: specific binding of (125 I)insulin to the plasma membrane and its relation to insulin bioactivity. Proc Natl Acad Sci USA. 1971;68:1833–1837.

28. ^Kasuga M, Zick Y, Blithe DL, Crettaz M, Kahn CR. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature. 1982;298:667–669.

29. ^ Ebina Y, et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985;40:747–758.

30. ^Ullrich A, et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature. 1985;313:756–761.

31. ^Ullrich A, et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature. 1985;313:756–761.

32. ^Hubbard, S. R. (2013). The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harbor Perspectives in Biology, 5, a008946

33. ^Anthony JC, Reiter AK, Anthony TG, Crozier SJ, Lang CH, MacLean DA, Kimball SR, and Jefferson LS. Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the

34. ^Sinaud S, Balage M, Bayle G, Dardevet D, Vary TC, Kimball SR, Jefferson LS, and Grizard J. Diazoxide-induced insulin deficiency greatly reduced muscle protein synthesis in rats: involvement of eIF4E. Am J Physiol Endocrinol Metab 276:E50–E61, 1999.

35. ^Preedy VR and Garlick PJ. The response of muscle proteinsynthesis to nutrient intake in postabsorptive rats: the role ofinsulin and amino acids. Biosci Rep 6: 177–183, 1986.

36. ^Pham PT, Heydrick SJ, Fox HL, Kimball SR, Jefferson LS, and Lynch CJ. Assessment of cell signaling pathways in the regulation of mTOR by amino acids in rat adipocytes. J Cell Biochem 79: 427–441, 2000.

37. ^Campbell LE, Wang X, and Proud CG. Nutrients differentially regulate multiple translation factors and their control by insulin. Biochem J 344: 433–441, 1999.

38. ^Anton J. M. Wagenmakers,corresponding author 1 ,* Juliette A. Strauss, 1 Sam O. Shepherd, 1 Michelle A. Keske, 2 and Matthew Cocks.Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing.2016 Apr 15; 594(8): 2207–2222.

39. ^Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ. Obesity blunts insulinmediated microvascular recruitment in human forearm muscle. Diabetes. 2006;55(5):1436-1442

40. ^Clerk LH, Vincent MA, Barrett EJ, Lankford MF, Lindner JR. Skeletal muscle capillary responses to insulin are abnormal in late-stage diabetes and are restored by angiotensinconverting enzyme inhibition. American journal of physiology Endocrinology and metabolism. 2007;293(6):E1804-1809.

41. ^Vincent MA, Clerk LH, Lindner JR, et al. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. American journal of physiology Endocrinology and metabolism. 2006;290(6):E1191-1197.

42. ^Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–1645.

43. ^Guallar-Castillon P, Perez RF, Lopez Garcia E, et al. Magnitude and management of metabolic syndrome in Spain in 2008–2010: the ENRICA study. Rev Esp Cardiol. 2014;67(5):367–373.

44. ^Prasad DS, Kabir Z, Dash AK, et al. Prevalence and risk factors for metabolic syndrome in Asian Indians: a community study from urban eastern India. J Cardiovasc Dis Res. 2012;3(3):204–211.

45. ^Ford ES, Li C, Zhao G, et al. Prevalence of the metabolic syndrome among U.S. adolescents using the definition from the International Diabetes Federation. Diabetes Care. 2008;31(3):587–589.

46. ^abKoopman R, Zorenc AHG, Gransier RJJ, Cameron-Smith D, and van Loon LJC. Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. Am J Physiol Endocrinol Metab 290: E1245–52, 2006.

47. ^M.-Y. Chien, L.-Y. Wang, H.-C. Chen, The relationship of sleep duration with obesity and sarcopenia in community-dwelling older adults. Gerontology 61, 399–406 (2015).

48. ^M. Monico-Neto, S. Q. Giampá, K. S. Lee, C. M. de Melo, H. de Sá Souza, M. Dáttilo, P. A. Minali, P. H. Santos Prado, S. Tufik, M. T. de Mello, H. K. M. Antunes, Negative energy balance induced by paradoxical sleep deprivation causes multicompartmental changes in adipose tissue and skeletal muscle. Int. J. Endocrinol. 2015, 908159 (2015).

49. ^Jefferson LS, Rannels DE, Munger BL, and Morgan HE. Insulin in the regulation of protein turnover in heart and skeletal muscle. Fed Proc 33: 1098–1104, 1974.

50. ^Karinch AM, Kimball SR, Vary TC, and Jefferson LS. Regulation of eukaryotic initiation factor-2B activity in muscle of diabetic rats. Am J Physiol Endocrinol Metab 264: E101–E108, 1993.

51. ^Kimball SR, Vary TC, and Jefferson LS. Regulation of protein synthesis by insulin. Annu Rev Physiol 56: 321–348, 1994.

52. ^Anthony JC, Reiter AK, Anthony TG, Crozier SJ, Lang CH, MacLean DA, Kimball SR, and Jefferson LS. Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E-BP1 or S6K1 phosphorylation. Diabetes 51: 928–936, 2002.

53. ^Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch Intern Med. 2003;163:427–436.

54. ^ Yki-Jarvinen H. Sex and insulin sensitivity. Metabolism. 1984;33:1011–1015.

55. ^Hevener AL, Olefsky JM, Reichart D, et al. Macrophage PPAR γ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest. 2007;117:1658–1669.

56. ^Choi CS, Fillmore JJ, Kim JK, et al. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance. J Clin Invest. 2007;117:1995–2003.

57. ^Frias JP, Macaraeg GB, Ofrecio J, Yu JG, Olefsky JM, Kruszynska YT. Decreased susceptibility to fatty acid-induced peripheral tissue insulin resistance in women. Diabetes. 2001;50:1344–1350.

58. ^Hevener A, Reichart D, Janez A, Olefsky J. Female rats do not exhibit free fatty acid-induced insulin resistance. Diabetes. 2002;51:1907–1912.

59. ^ Djouadi F, Weinheimer CJ, Saffitz JE, et al. A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor α-deficient mice. J Clin Invest. 1998;102:1083–1091.

60. ^Hong J, Stubbins RE, Smith RR, Harvey AE, Nunez NP. Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr J. 2009;8:11.

61. ^ Rincon J, Holmang A, Wahlstrom E O, Lonnroth P, Bjorntorp P, Zierath J R, Wallberg-Henriksson H. Diabetes. 1996;45:615–621.

62. ^Hope P J, Turnbull H, Breed W, Morley J E, Horowitz M, Wittert G A. Physiol Behav. 2000;69:463–470.

63. ^Rogers NH, Witczak CA, Hirshman MF, Goodyear LJ, Greenberg AS. Estradiol stimulates Akt, AMP-activated protein kinase (AMPK) and TBC1D1/4, but not glucose uptake in rat soleus. Biochem Biophys Res Commun. 2009;382:646–650.

64. ^Gorres BK, Bomhoff GL, Morris JK, Geiger PC. In vivo stimulation of oestrogen receptor α increases insulin-stimulated skeletal muscle glucose uptake. J Physiol. 2011;589:2041–2054.

65. ^Bryzgalova G, Gao H, Ahren B, et al. Evidence that oestrogen receptor-α plays an important role in the regulation of glucose homeostasis in mice: insulin sensitivity in the liver. Diabetologia. 2006;49:588–597.

66. ^Wiik A, Gustafsson T, Esbjornsson M, et al. Expression of oestrogen receptor α and β is higher in skeletal muscle of highly endurance-trained than of moderately active men. Acta Physiol Scand. 2005;184:105–112.

67. ^Fu MH, Maher AC, Hamadeh MJ, Ye C, Tarnopolsky MA. Exercise, sex, menstrual cycle phase, and 17β-estradiol influence metabolism-related genes in human skeletal muscle. Physiol Genomics. 2009;40:34–47.

68. ^Rogers NH, Witczak CA, Hirshman MF, Goodyear LJ, Greenberg AS. Estradiol stimulates Akt, AMP-activated protein kinase (AMPK) and TBC1D1/4, but not glucose uptake in rat soleus. Biochem Biophys Res Commun. 2009;382:646–650.

69. ^Riant E, Waget A, Cogo H, Arnal JF, Burcelin R, Gourdy P. Estrogens protect against high-fat diet-induced insulin resistance and glucose intolerance in mice. Endocrinology. 2009;150:2109–2117.

70. ^Ordonez P, Moreno M, Alonso A, Llaneza P, Diaz F, Gonzalez C. 17β-Estradiol and/or progesterone protect from insulin resistance in STZ-induced diabetic rats. J Steroid Biochem Mol Biol. 2008;111:287–294.

71. ^Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14:395–403.

72. ^Pfeilschifter J, Koditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23:90–119.

73. ^Sites CK, Toth MJ, Cushman M, et al. Menopause-related differences in inflammation markers and their relationship to body fat distribution and insulin-stimulated glucose disposal. Fertil Steril. 2002;77:128–135.

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页