微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)

这个问题首先可以从一元函数的微分入手。

首先是高阶无穷小的定义:

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(1)

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(2)

​上图是高阶无穷小的来历。

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(3)

微分定义中出现了高阶无穷小。

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(4)

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(5)

图0

​以上证明过程可以清晰看到微分中高阶无穷小出现的原因。首先是根据导数的定义得出a,这个a是肯定会随着Δx趋于0而趋于0的,因为Δy/Δx就是导数的定义,而当Δx趋于0的时候,导数得到精确值f'(x0),所以a是Δx趋于0时候的无穷小,a再乘以Δx得到aΔx,当然就是Δx趋于0时的高阶无穷小。

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(6)

以上是极限的定义。

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(7)

以上是Δy和dy是等价无穷小的证明,所以两者在Δx趋于0时可以相互替代。

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(8)

​上图是Δy和dy的几何意义。对于x轴上固定两点x和x Δx,Δy表示的是曲线上相对应两点的高度变化,也就是函数值的变化;dy表示的是切线上相对应两点的高度变化。很明显,当Δx趋于0时,两者趋于一致。高阶无穷小就是曲线上变化的高度减去切线上变化的高度Δy-dy。

下面是多元函数的情况。

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(9)

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(10)

图1

​上图证明过程中,通过多元函数的连续定义,引入了无穷小epsilon1。为了搞清楚这个问题,首先看多元函数的极限定义:

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(11)

图2

​然后是多元函数连续性定义:

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(12)

图3

​与一元函数连续性定义对比:

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(13)

图4

​上图中出现了epsilon。与图1对比,f(x)就是

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(14)

​,而f(x0)就是

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(15)

​图4中的epsilon肯定会随着x趋于x0而趋于0,这一点很容易由下图的连续函数几何意义看出来:

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(16)

​上图中的Δy就是f(x)-f(x0)。很明显,当Δx趋于0时,Δy也趋于0。

而对于多元函数来说,这个Δx就是下图中的PP0,也就是图1中的epsilon1。很明显,这个epsilon1就相当于图0中的a,而PP0也相当于图0中的Δx,所以图1中的epsilon1会随着PP0(也就是p)趋于0而趋于0。

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(17)

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(18)

上图的目的正是为了证明全增量Δz与全微分dz之间的差距

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(19)

是图2中

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(20)

的高阶无穷小。

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(21)

​全增量Δz与全微分dz的几何意义如上图。由于

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(22)

​从切平面的方程可以看出,由于z-z0就是dz,x-x0就是dx,y-y0就是dy。

如上图所示,假设A点坐标是(x,y),B点坐标是

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(23)

​则由这两点在xoy平面向上作两条垂线(这里过A点的垂线与曲面的交点就是M),与切平面交点之间的高度差就是全微分

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(24)

,而与曲面两个交点之间的高度差就是全增量

微分和增量的比较(增量与微分之间的差距为什么是高阶无穷小)(25)

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页