狭义相对论公式(广义相对论)

狭义相对论公式(广义相对论)(1)

因果结构和全局几何

一个无限的静态闵可夫斯基宇宙的彭罗斯图在广义相对论中没有任何有静止质量的物体能够追上或超过一束光脉冲,即是说发生于某一点的事件A在光从那一点传播到空间中任意位置X之前无法对位置X产生影响。因此,一个时空中所有光的世界线(零性测地线)包含了有关这个时空的关键因果结构信息。描述这种因果结构的是彭罗斯-卡特图,在这种图中无限大的空间区域和时间间隔通过共形变换被“收缩”(数学上称为紧化)在可被容纳的有限时空区域内,而光的世界线仍然和在闵可夫斯基图中一样用对角线表示。

彭罗斯和其他研究者注意到因果结构的重要性,从而发展了所谓全局几何。全局几何中研究的对象不再是爱因斯坦场方程的一个个特定解(或一族解),而是运用一些对所有测地线都成立的关系,如Raychaudhuri方程,以及对物质本性的非特异性假设(通常用所谓能量条件的形式来表述)来推导普适性结论。

视界

在全局几何下可以证明有些时空中存在被称作视界的分界线,它们将时空中的一部分区域隔离起来。这样的最著名例子是黑洞:当质量被压缩到空间中的一块足够小的区域中后(相关长度为史瓦西半径),没有光子能从内部逸出。而由于任何有质量的粒子速度都无法超过光速,黑洞内部的物质也被封闭在视界内。不过,从视界之外到视界之内的通道依然是存在的,这表明黑洞的视界作为一种分界线并不是物理性质的屏障。

一个旋转黑洞的能层,在从旋转黑洞抽取能量的过程中扮演着重要角色早期的黑洞研究主要依赖于求得爱因斯坦场方程的精确解,著名的解包括球对称的史瓦西解(用来描述静态黑洞)和反对称的克尔解(用来描述旋转定态黑洞,并由此引入了能层等有趣的属性)。而后来的研究通过全局几何揭示了更多的关于黑洞的普适性质:研究表明经过一段相当长的时间后黑洞都逐渐演化为一类相当简单的可用十一个参数来确定的星体,包括能量、动量、角动量、某一时刻的位置和所带电荷。这一性质可归纳为黑洞的唯一性定理:“黑洞没有毛发”,即黑洞没有像人类的不同发型那样的不同标记。例如,星体经过引力坍缩形成黑洞的过程非常复杂,但最终形成的黑洞的属性却相当简单。

更值得一提的是黑洞研究已经得到了一组制约黑洞行为的一般性定律,这被称作黑洞(热)力学,这些定律与热力学定律有很强的类比关系。例如根据黑洞力学的第二定律,一个黑洞的视界面积永不会自发地随着时间而减少,这类似于一个热力学系统的熵;这个定律也决定了通过经典方法(例如,彭罗斯过程)不可能从一个旋转黑洞中无限度地抽取能量。这些都强烈暗示了黑洞力学定律实际是热力学定律的一个子集,而黑洞的表面积和它的熵成正比。从这个假设可以进一步修正黑洞力学定律。例如,由于黑洞力学第二定律是热力学第二定律的一部分,则可知黑洞的表面积也有可能减小,只要有某种其它过程来保证系统的总熵是增加的。而热力学第三定律认为不存在温度为绝对零度的物体,可以进一步推知黑洞应该也存在热辐射;半经典理论计算表明它们确实存在有热辐射,在这个机制中黑洞的表面引力充当着普朗克黑体辐射定律中温度的角色,这种辐射称作霍金辐射(参见下文量子理论一节)。

广义相对论还预言了其他类型的视界模型:在一个膨胀宇宙中,观察者可能会发现过去的某些区域不能被观测(所谓“粒子视界”),而未来的某些区域不能被影响(事件视界)。即使是在平直的闵可夫斯基时空中,当观察者处于一个加速的参考系时也会存在视界,这些视界也会伴随有半经典理论中的盎鲁辐射。

奇点

广义相对论的另一个普遍却又令人困扰的特色问题是时空的分界线——奇点的出现。时空可以通过沿着类时和类光的测地线来探索,这些路径是光子及其他所有粒子在自由落体运动中的可能轨迹,但爱因斯坦场方程的某些解具有“粗糙的边缘”——这被称作时空奇点,这些奇点上类时或类光的测地线会突然中止,而对于这些奇点没有定义好的时空几何来描述。需要说明的是,“奇点”往往可能并不是一个“点”:那些场方程的解的“粗糙边缘”在既有坐标系下,不仅可能是一个“点”,还可以以其他几何形式出现(比如克尔黑洞的“奇环”等)。一般意义上的奇点是指曲率奇点,这是说在这些点上描述时空曲率的几何量,例如里奇张量为无限大(曲率奇点是相对所谓坐标奇点而言的,坐标奇点本质上不属于奇点的范畴:有些度规在某个特定坐标下会产生无穷大,但本质上这些点不具有奇性,在其他合适的坐标下是光滑的,也不会产生无穷大的曲率张量)。描述未来的奇点(世界线的终结)的著名例子包括永远静态的史瓦西黑洞内部的奇点,以及永远旋转的克尔黑洞内部的环状奇点。弗里德曼-勒梅特-罗伯逊-沃尔克度规,以及其他描述宇宙的时空几何都具有过去的奇点(世界线的开端),这被称作大爆炸奇点,而有些还具有未来的奇点(大挤压)。

考虑到这些模型都是高度对称从而被简化的,人们很容易去猜测奇点的出现是否只是理想状态下的不自然产物。然而著名的由全局几何证明的奇点定理指出,奇点是广义相对论的一个普遍特色结果,并且任何有质量的实体发生引力坍缩并达到一个特定阶段后都会形成奇点,而在一系列膨胀宇宙模型中也一样存在奇点。不过奇点定理的内容基本没有涉及到奇点的性质,这些关于确定奇点的一般结构(例如所谓BKL假说)的问题是当前相关研究的主要课题。另一方面,由于在对于物理规律的破坏方面而言,一个被包裹于视界之中的奇点被认为要好过一个“裸”的奇点,故而宇宙监督假说被提出,它认为所有未来的实际奇点(即没有完美对称性的具有实际性质的物体形成的奇点)都会被藏在视界之内,从而对外面对观察者不可见,即自然界憎恨裸奇点。尽管还没有实际证据证明这一点,有数值模拟的结果支持这一假说的正确性。

演化方程

每一个爱因斯坦场方程的解都是一个宇宙,这里的宇宙含义既包括了整个空间,也包括了过去与未来——它们并不单单是反映某些事物的“快照”,而是所描述的时空的完全写真。每一个解在其专属的特定宇宙中都能描述任意时间和任意位置的时空几何和物质状态。出于这个表征,爱因斯坦的理论看上去与其他大多数物理理论有所不同:大多数物理理论都需要指明一个物理系统的演化方程(例如量子力学中的埃伦费斯特定理),即如果一个物理系统在给定时刻的状态已知,其演化方程能够允许描述系统在过去和未来的状态。爱因斯坦理论中的引力场和其他场的更多区别还在于前者是自身相互作用的(是指它在没有其他场出现时仍然还是非线性的),并且不具有固定的背景结构(在宇宙尺度上会发生演化)。

为了更好地理解爱因斯坦场方程这个与时间有关的偏微分方程,可以将它写成某种能够描述宇宙随时间演化的形式。这种形式被称作“3 1”分解,其中时空被分为三维空间和一维时间。最著名的形式叫做ADM形式,在这种分解下广义相对论的时空演化方程具有良好的性质:在适当的初始条件给定的情形下方程有解并且是唯一的。场方程的“3 1”分解形式是数值相对论的研究基础。

全局和准局部量

演化方程的观念与广义相对论性物理中的另一个方面紧密在爱因斯坦的理论中,一个系统的总质量(或能量)这个看似简单的概念无法找到一种普遍性的定义。其原因在于,引力场原则上并不像其他的场那样具有可以局部化的能量。

尽管如此,试图通过其他途径来定义一个系统的总质量还是可能的,在经典物理中,质量(或能量)的定义可以来自时间平移不变性的守恒量,或是通过系统的哈密顿形式。在广义相对论中,从这两种途径出发可以分别得到如下质量的定义:

* 柯玛质量:从类时的Killing矢量出发通过柯玛积分得到的在时间平移不变性下的守恒量,表现为一个静态时空的总能量;

* ADM质量:在一个渐近平直时空中建立广义相对论的哈密顿形式,从中定义系统的总能量。

如果将一个系统的总质量中被引力波携带至无限远处的能量除去,得到的结果叫做零性无限远处的邦迪质量。这些定义而来的质量被舍恩和丘成桐的正质量定理证明是正值,而动量和角动量也具有全局的相应定义。在这方面的研究中还有很多试图建立所谓准局部量的尝试,例如仅通过一个孤立系统所在的有限空间区域中包含的物理量来构造这个孤立系统的质量。这类尝试寄希望于能够找到一个更好地描述孤立系统的量化方式,例如环假说的某种更精确的形式。

编辑本段和量子理论的关系

如果说广义相对论是现代物理学的两大支柱之一,那么量子理论作为我们借此了解基本粒子以及凝聚态物理的基础理论就是现代物理的另一支柱。然而,如何将量子理论中的概念应用到广义相对论的框架中仍然是一个未能解决的问题。

弯曲时空中的量子场论

作为现代物理中粒子物理学的基础,通常意义上的量子场论是建立在平直的闵可夫斯基时空中的,这对于处在像地球这样的弱引力场中的微观粒子的描述而言是一个非常好的近似。而在某些情形中,引力场的强度足以影响到其中的量子化的物质但不足以要求引力场本身也被量子化,为此物理学家发展了弯曲时空中的量子场论。这些理论借助于经典的广义相对论来描述弯曲的背景时空,并定义了广义化的弯曲时空中的量子场理论。通过这种理论,可以证明黑洞也在通过黑体辐射释放出粒子,这即是霍金辐射,并有可能通过这种机制导致黑洞最终蒸发。如前文所述,霍金辐射在黑洞热力学的研究中起到了关键作用。

量子引力

物质的量子化描述和时空的几何化描述之间彼此不具有相容性,以及广义相对论中时空曲率无限大(意味着其结构成为微观尺度)的奇点的出现,这些都要求着一个完整的量子引力理论的建立。这个理论需要能够对黑洞内部以及极早期宇宙的情形做出充分的描述,而其中的引力和相关的时空几何需要用量子化的语言来叙述。尽管物理学家为此做出了很多努力,并有多个有潜质的候选理论已经发展起来,至今人类还没能得到一个称得上完整并自洽的量子引力理论。

一个卡拉比-丘流形的投影,由弦论所提出的紧化额外维度的一种方法量子场论作为粒子物理的基础已经能够描述除引力外的其余三种基本相互作用,但试图将引力概括到量子场论的框架中的尝试却遇到了严重的问题。在低能区域这种尝试取得了成功,其结果是一个可被接受的引力的有效(量子)场理论,但在高能区域得到的模型是发散的(不可重整化)。

圈量子引力中的一个简单自旋网络

试图克服这些限制的尝试性理论之一是弦论,在这种量子理论中研究的最基本单位不再是点状粒子,而是一维的弦。弦论有可能成为能够描述所有粒子和包括引力在内的基本相互作用的大统一理论,其代价是导致了在三维空间的基础上生成六维的额外维度等反常特性。在所谓第二次超弦理论革新中,人们猜测超弦理论,以及广义相对论与超对称的统一即所谓超引力,能够构成一个猜想的十一维模型的一部分,这种模型叫做M理论,它被认为能够建立一个具有唯一性定义且自洽的量子引力理论。

另外一种尝试来自于量子理论中的正则量子化方法。应用广义相对论的初值形式(参见上文演化方程一节),其结果是惠勒-得卫特方程(其作用类似于薛定谔方程)。虽然这个方程在一般情形下定义并不完备,但在所谓阿西特卡变量的引入下,从这个方程能够得到一个很有前途的模型:圈量子引力。在这个理论中空间是一种被称作自旋网络的网状结构,并在离散的时间中演化。

取决于广义相对论和量子理论中的哪些性质可以被接受保留,并在什么能量量级上需要引入变化,对量子引力的尝试理论还有很多,例如动力三角剖分、因果组合、扭量理论以及基于路径积分的量子宇宙学模型。

所有这些尝试性候选理论都仍有形式上和概念上的主要问题需要解决,而且它们都在面临一个共同的问题,即至今还没有办法从实验上验证量子引力理论的预言,进而无法通过多个理论之间某些预言的不同来判别其正确性。在这个意义上,量子引力的实验观测还需要寄希望于未来的宇宙学观测以及相关的粒子物理实验逐渐成为可能。

编辑本段当前进展

在引力和宇宙学的研究中,广义相对论已经成为了一个高度成功的模型,至今为止已经通过了每一次意义明确的观测和实验的检验。然而即便如此,仍然有证据显示这个理论并不是那么完善的:对量子引力的寻求以及时空奇点的现实性问题依然有待解决;实验观测得到的支持暗物质和暗能量存在的数据结果也在暗暗呼唤着一种新物理学的建立;而从先驱者号观测到的反常效应也许可以用已知的理论来解释,也许则真的是一种新物理学来临的预告。不过,广义相对论之中仍然充满了值得探索的可能性:数学相对论学家正在寻求理解奇点的本性,以及爱因斯坦场方程的基本属性;不断更新的计算机正在进行黑洞合并等更多的数值模拟;而第一次直接观测到引力波的竞赛也正在前进中,人类希望借此能够在比至今能达到的强得多的引力场中创造更多检验这个理论的正确性的机会。在爱因斯坦发表他的理论九十多年之后,广义相对论依然是一个高度活跃的研究领域。

编辑本段基础教案示例

广义相对性原理和等效原理 狭义相对论认为,在不同的惯性参考系中一切物理规律都是相同的.爱因斯坦在此基础上又向前迈进了一大步,认为在任何参考系中(包括非惯性系)物理规律都是相同的,这就是广义相对性原理.

下面介绍广义相对论的另一个基本原理.

假设宇宙飞船是全封闭的,宇航员和外界没有任何联系,那么他就没有任何办法来判断,使物体以某一加速度下落的力到底是引力还是惯性力.实际上,不仅是自由落体的实验,飞船内部的任何物理过程都不能告诉我们,飞船到底是在加速运动,还是停泊在一个行星的表面.这里谈到的情景和本章第一节所述伽利略大船中的情景十分相似.这个事实使我们想到:一个均匀的引力场与一个做匀加速运动的参考系等价.爱因斯坦把它作为广义相对论的第二个基本原理,这就是著名的等效原理.

从这两个基本原理出发可以直接得出一些意想不到的结论.

狭义相对论公式(广义相对论)(2)

广义相对论

假设在引力可以忽略的宇宙空间有一艘宇宙飞船在做匀加速直线运动,一束光垂直于运动方向射入这艘飞船.船外静止的观察者当然会看到这束光是沿直线传播的,但是飞船中的观察者以飞船为参考系看到的却是另外一番情景.为了记录光束在飞船中的径迹,他在船中等距离地放置一些半透明的屏(如图),光可以透过这些屏,同时在屏上留下光点.由于飞船在前进,光到达下一屏的位置总会比到达上一展的位置更加靠近船尾.如果飞船做匀速直线运动,光在任何相邻两屏之间飞行时,飞船前进的距离都相等,飞船上的观察者看到光的径迹仍是一条直线(如图中的虚线),尽管直线的方向与船外静止观察者看到的直线方向不一样.如果飞船做匀加速直线运动,在光向右传播的同时,飞船的速度也在不断增大,因此船上观察者记录下的光的径迹是一条抛物线(如图中的实线).

根据等效原理,飞船中的观察者也完全可以认为飞船没有加速运动,而是在船尾方向存在一块巨大的物体,它的引力场影响了飞船内的物理过程.因此我们得出结论:物体的引力能使光线弯曲.

通常物体的引力场都太弱,20世纪初只能观测到太阳引力场引起的光线弯曲.由于太阳引力场的作用,我们有可能看到太阳后面的恒星(如图).但是,平时的明亮天空使我们无法观星,所以最好的时机是发生日全食的时候.1919年5月29日恰好有一次日全食,两支英国考察队分赴几内亚湾和巴西进行观测,其结果完全证实了爱因斯坦的预言.这是广义相对论的最早的验证.

如图的现象表明,星球的强引力场能使它背后传来的光线会聚,这种现象叫做引力透镜效应.宇宙中很可能存在着黑洞,黑洞不辐射电磁波,因此无法直接观测,但是它的巨大质量和极小的体积使它附近具有极强的引力场,所以引力透镜效应是探索黑洞的途径之一.

时间间隔与引力场有关 引力场的存在使得空间不同位置的时间进程出现差别.

狭义相对论公式(广义相对论)(3)

广义相对论

我们考察一个转动的巨大圆盘(如图).从地面上看,圆盘上除转动轴的位置外,各点都在做加速运动,越是靠近边缘,加速度越大,方向指向盘心.从地面上还会看到,越是靠近边缘的点,速度越大.根据狭义相对论,同一个过程,越是发生在靠近边缘的位置,这个过程所持续的时间就越长.或者说,靠近边缘位置的时间进程比较缓慢.

现在再以圆盘本身为参考系研究这个现象.圆盘上的人认为,盘上存在着一个引力场,方向由盘心指向边缘.既然靠近边缘位置的时间进程比较缓慢,盘上的人就可以得出结论:在引力势较低的位置,时间进程比较慢.

宇宙中有一类恒星,体积很小,质量却不小,叫做矮星.矮星表面的引力很强,引力势比地球表面低得多.矮星表面的时间进程比较慢,那里的原子发光的频率比同种原子在地球上发光的频率低,看起来偏红.这个现象叫做引力红移,已经在天文观测中得到证实.现代技术也能够在地球上验证引力红移.

杆的长度与引力场有关 仍然考察转动的圆盘.同样的杆,放在盘上的不同位置,它们随盘运动的速度就不一样,根据狭义相对论,它们的长度也就不一样,越是靠近边缘,杆就越短.盘上的人也观察到了这种差别,不过他以圆盘为参考系,认为盘是静止的,同时他还认为盘上各点存在着指向圆盘边缘的引力,因此他得出结论:引力势越低的位置,杆的长度越短.

杆的长度和引力场的分布有关,这个现象反映出这样的事实,即由于物质的存在,实际空间并不是均匀的,这和我们过去的观念有很大的差别.打个比方,一块布上面的格子是整齐的(如图甲),如果用手向下压,格子就弯曲了(如图乙).物理学借用了“弯曲”这个词,通常说,由于物质的存在,实际的空间是弯曲的.

行星沿椭圆轨道绕太阳运动,有时离太阳近些,有时远些.太阳的巨大质量使它周围的空间发生弯曲,其结果是,行星每公转一周它的轨道的长轴都比上一个周期偏转一个角度,这个现象叫做行星轨道的进动.理论分析表明只有水星轨道的进动比较显著,达到约每世纪0.01°.这个现象早在广义相对论出现之前就已经发现,只是无法解释,所以它实际是广义相对论的最早的佐证.

广义相对论与几何学 最后,我们再次回到转动的圆盘.狭义相对论告诉我们,只有沿着运动方向的长度发生变化,垂直于运动方向的长度不会变化;如果以圆盘为参考系,就可以说,沿着引力方向的空间尺度没有变化,只有垂直于引力方向的空间尺度发生了改变.这一点具有非常深刻的意义,因为这时测量圆盘的周长和直径,它们的比值就不再是3.141 59…,而是别的值,三角形的内角和也不会是180°了……简而言之,由于实际空间是弯曲的,我们学习的几何学已经不适用了.

几何学反映的是人对空间关系的认识.有史以来人们只是在比较小的空间尺度中接触到比较弱的引力场.这种情况下空间的弯曲可以忽略,在此基础上人类发展了欧几里得几何学,它反映了平直空间的实际.广义相对论告诉我们实际空间是弯曲的,因此描述实际空间的应该是更具有一般意义的非欧几何.不过,作为非欧几何的特例,欧几里得几何学在它的适用范围内仍是正确的,还将继续发挥作用.

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页