java设计模式代码实现 设计模式你相信吗

大家好,今天给大家介绍一个新的设计模式,叫做memento模式。

memento在英文当中是纪念品的意思,在这里,指的是对象的深度拷贝。通过对对象深度拷贝的方法来实现事务的功能。有了解过数据库的小伙伴们应该都知道,在数据库当中有些操作是绑定的,要么一起执行成功,要么一起不执行,绝对不运行某些操作执行了,某些操作没有执行的情况发生。这一点就被称为事务。

深度拷贝

我们先来简单回顾一下Python当中的拷贝。

拷贝在很多语言当中都有对应的函数,在Python当中也不例外。Python中的拷贝函数有两个,一个是copy,另外一个是deepcopy。也就是常说的深拷贝和浅拷贝,这两者的区别也非常简单,简而言之就是浅拷贝只会拷贝父类对象,不会拷贝父类对象当中的子对象

我们来看一个例子,在下图当中b是a的浅拷贝,我们可以看到当a[2]当中插入了5之后,b当中同样也多了一个5。因为它们下标2存储的是同一个引用,所以当a当中插入的时候,b当中也发生了同样的改变。我们也可以看到,当我们改变了a[0]的时候,b当中则没有发生对应的改变。因为a[0]是一个数字,数字是基础类型直接存储的值而不是引用。

java设计模式代码实现 设计模式你相信吗(1)

与浅拷贝对应的就是深拷贝,我们可以看到,当a[2]当中插入元素的时候,深度拷贝出来的b并不会发生对应的变化。

java设计模式代码实现 设计模式你相信吗(2)

memento

利用拷贝,我们可以实现memento函数,它的作用是给对象做备份。在Python当中,对于一个对象obj来说,它所有的成员以及函数等信息全是储存在obj.__dict__这个dict当中的。也就是说如果我们将一个对象的__dict__拷贝一份的话,其实就相当于我们把对象拷贝了一份。

通过使用拷贝,我们可以很容易实现memento函数,我们先来看代码吧。

fromcopyimportcopy,deepcopy defmemento(obj,deep=False): state=deepcopy(obj.__dict__)ifdeepelsecopy(obj.__dict__) defrestore(): obj.__dict__.clear() obj.__dict__.update(state) returnrestore

memento是一个高阶函数,它返回的结果是执行函数,而不是具体的执行结果。如果对高阶函数不太熟悉的同学,可以去回顾一下Python当中高阶函数的相关内容。

这里面的逻辑不难理解,传入的参数是一个obj的对象和一个bool型的flag。flag表示使用深拷贝或浅拷贝,obj就是我们需要做对应快照或者是存档的对象。我们希望在对象框架不变的基础上恢复其中的内容,所以我们拷贝的范围很明确,就是obj.__dict__,这当中存储了对象的所有关键信息。

我们看下restore这个函数,当中的内容其实很简单,只有两行。第一行是清空obj目前__dict__当中的内容,第二步是用之前保存的state来还原。其实restore执行的是一个回滚obj的功能,我们捋一下整个过程。我们运行memento函数会得到restore这个函数,当我们执行这个函数的时候,obj当中的内容会回滚到上次执行memento时的状态。

理解了memento当中的逻辑之后,距离我们实现事务就不远了。关于事务我们有两种实现方法,一种是通过对象,一种是通过装饰器,我们一个一个来说吧。

Transaction对象

面向对象实现的方式比较简单,它和我们平时使用事务的过程也比较近似。Transaction对象当中应该提供两个函数,一个是commit一个是rollback。也就是说当我们执行成功之后我们执行commit,对执行的结果进行快照。如果执行失败则rollback,将对象的结果回滚到上一次commit时的状态

我们理解了memento函数之后,会发现commit和rollback刚好对应执行memento函数以及执行restore函数。这样我们不难写出代码:

classTransaction: deep=False states=[] def__init__(self,deep,*targets): self.deep=deep self.targets=targets self.commit() defcommit(self): self.states=[memento(target,self.deep)fortargetinself.targets] defrollback(self): fora_stateinself.states: a_state()

由于我们需要事务的对象可能不止一个,所以这里的targets设计成了数组的形式。

Transaction装饰器

我们也可以把事务实现成装饰器,这样我们可以通过注解的方式来使用。

这里的代码原理也是一样的,只不过实现逻辑基于装饰器而已。如果对装饰器熟悉的同学,其实也不难理解。这里的args[0]其实就是某一个类的实例,也就是我们需要保证事务的主体。

fromfunctoolsimportwraps deftransactional(func): @wraps(func) defwrapper(*args,**kwargs): #args[0]isobj state=memento(args[0]) try: func(*args,**kwargs) exceptExceptionase: state() raisee returnwrapper

这是常规装饰器的写法,当然我们也可以用类来实现装饰器,其实原理差不多,只是有一些细节不太一样。

classTransactional: def__init__(self,method): self.method=method def__get__(self,obj,cls): deftransaction(*args,**kwargs): state=memento(obj) try: returnself.method(*args,**kwargs) exceptExceptionase: state() raisee returntransaction

当我们将这个注解加在某一个类方法上,当我们执行obj.xxx的时候,就会执行Transactional这个类当中的__get__方法,而不是获得Transactional这个类。并且把obj以及obj对应的类型作为参数传入,也就是这里的obj和cls的含义。这个是用类来实现装饰器的常规做法,我们贴一下常规的代码,来比较学习一下。

classWrapper: def__init__(self,func): wraps(func)(self) def__call__(self,*args,**kwargs): returnself.__wrapped__(*args,**kwargs) def__get__(self,instance,cls): ifinstanceisNone: returnself else: returntypes.MethodType(self,instance)

这是一个用类来实现装饰器的case,我们可以看到在__get__这个函数当中返回的是self,也就是返回了Wrapper这个类。类通常是不能直接执行的,为了让它能够执行,这里给它实现了一个__call__函数。如果还是看不明白也没有关系,可以忽略这部分。用类实现装饰器也不常见,我们熟悉高阶函数的方法就可以了。

实战

最后我们来看一个实际应用的例子,我们实现了一个NumObj的类,兼容了上面两种事务的使用,可以对比一下看看区别。

classNumObj: def__init__(self,value): self.value=value def__repr__(self): return'<%s,%r>'%(self.__class__.__name__,self.value) defincrement(self): self.value =1 @transactional defdo_stuff(self): self.value ='111' self.increment() if__name__=='__main__': num_obj=NumObj(-1) a_transaction=Transaction(True,num_obj) #使用Transaction try: foriinrange(3): num_obj.increment() print(num_obj) a_transaction.commit() print('----committed') foriinrange(3): num_obj.increment() print(num_obj) num_obj.value ='x' print(num_obj) exceptException: a_transaction.rollback() print('----rollback') print(num_obj) #使用Transactional print('--nowdoingstuff') num_obj.increment() try: num_obj.do_stuff() exceptException: print('->doingstufffailed') importsys importtraceback traceback.print_exc(file=sys.stdout) print(num_obj)

从代码当中,我们不难发现对于Transaction也就是面向对象实现的,我们需要额外创建一个Transaction的实例来在try catch当中控制是否执行回滚。而使用注解的方式更加灵活,它执行失败会自动执行回滚,不需要太多的额外操作。

一般来说我们更加喜欢使用注解的方式,因为这样的方式更加简洁干净,更加pythonic,能够体现出Python的强大。而第一种方法显得有些中规中矩,不过好处是可读性强一些,代码实现难度也低一些。大家如果在实际工作当中有需要用到,可以根据自己的实际情况去进行选择,两种都是不错的方法。

今天的文章就到这里,衷心祝愿大家每天都有所收获。如果还喜欢今天的内容的话,请来一个三连支持吧~(点赞、关注、转发

本文始发于公众号:TechFlow,求个关注

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页