service原理及使用方法(service详解)

在kubernetes中,pod是应用程序的载体,我们可以通过pod的ip来访问应用程序,但是pod的ip地址不是固定的,这也就意味着不方便直接采用Pod的ip对服务进行访问,下面我们就来聊聊关于service原理及使用方法?接下来我们就一起去了解一下吧!

service原理及使用方法(service详解)

service原理及使用方法

在kubernetes中,pod是应用程序的载体,我们可以通过pod的ip来访问应用程序,但是pod的ip地址不是固定的,这也就意味着不方便直接采用Pod的ip对服务进行访问。

为了解决这个问题,kubernetes提供了Service资源,Service会对提供同一个服务的多个pod进行聚合,并且提供一个统一的入口地址。通过访问Service的入口地址就能访问到后面的pod服务。

Service在很多情况下只是一个概念,真正起作用的其实是kube-proxy服务进程,每个Node节点上都运行着一个kube-proxy服务进程。当创建Service的时候会通过api-server向etcd写入创建的service的信息,而kube-proxy会基于监听的机制发现这种Service的变动,然后它会将最新的Service信息转换成对应的访问规则

10.97.97.97:80 是service提供的访问入口 当访问这个入口的时候,可以发现后面有三个pod的服务在等待调用, kube-proxy会基于rr(轮询)的策略,将请求分发到其中一个pod上去 这个规则会同时在集群内的所有节点上都生成,所以在任何一个节点上访问都可以。

如果显示没有这个命令报错了

你就用这一堆语句装一下 yum install -y conntrack ntpdate ntp ipvsadm ipset jq iptables curl sysstat libseccomp wget vim net-tools git cat <<EOF> /etc/sysconfig/modules/ipvs.modules #!/bin/bash modprobe -- ip_vs modprobe -- ip_vs_rr modprobe -- ip_vs_wrr modprobe -- ip_vs_sh modprobe -- nf_conntrack_ipv4 EOF chmod 755 /etc/sysconfig/modules/ipvs.modules && bash /etc/sysconfig/modules/ipvs.modules && lsmod | grep -e ip_vs -e nf_conntrack_ipv4

userspace 模式

userspace模式下,kube-proxy会为每一个Service创建一个监听端口,发向Cluster IP的请求被iptables规则重定向到kube-proxy监听的端口上,kube-proxy根据LB算法选择一个提供服务的Pod并和其建立链接,以将请求转发到Pod上。 该模式下,kube-proxy充当了一个四层负责均衡器的角色。由于kube-proxy运行在userspace中,在进行转发处理时会增加内核和用户空间之间的数据拷贝,虽然比较稳定,但是效率比较低。

iptables 模式

iptables模式下,kube-proxy为service后端的每个Pod创建对应的iptables规则,直接将发向CLUSTER IP的请求重定向到一个Pod IP。 该模式下kube-proxy不承担四层负责均衡器的角色,只负责创建iptables规则。该模式的优点是较userspace模式效率更高,但不能提供灵活的LB策略,当后端Pod不可用时也无法进行重试。

ipvs 模式

ipvs模式和iptables类似,kube-proxy监控Pod的变化并创建相应的ipvs规则。ipvs相对iptables转发效率更高。除此以外,ipvs支持更多的LB算法。

# 此模式必须安装ipvs内核模块,否则会降级为iptables # 开启ipvs [root@k8s-master01 ~]# kubectl edit cm kube-proxy -n kube-system # 修改mode: "ipvs" [root@k8s-master01 ~]# kubectl delete pod -l k8s-app=kube-proxy -n kube-system [root@node1 ~]# ipvsadm -Ln IP Virtual Server version 1.2.1 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 10.97.97.97:80 rr -> 10.244.1.39:80 Masq 1 0 0 -> 10.244.1.40:80 Masq 1 0 0 -> 10.244.2.33:80 Masq 1 0 0

  • ClusterIP:默认值,它是Kubernetes系统自动分配的虚拟IP,只能在集群内部访问
  • NodePort:将Service通过指定的Node上的端口暴露给外部,通过此方法,就可以在集群外部访问服务
  • LoadBalancer:使用外接负载均衡器完成到服务的负载分发,注意此模式需要外部云环境支持
  • ExternalName: 把集群外部的服务引入集群内部,直接使用

在使用service之前,首先利用Deployment创建出3个pod,注意要为pod设置app=nginx-pod的标签

创建deployment.yaml,内容如下:

apiVersion: apps/v1 kind: Deployment metadata: name: pc-deployment namespace: dev spec: replicas: 3 selector: matchLabels: app: nginx-pod template: metadata: labels: app: nginx-pod spec: containers: - name: nginx image: nginx:1.17.1 ports: - containerPort: 80

[root@k8s-master01 ~]# kubectl create -f deployment.yaml deployment.apps/pc-deployment created # 查看pod详情 [root@k8s-master01 ~]# kubectl get pods -n dev -o wide --show-labels NAME READY STATUS IP NODE LABELS pc-deployment-66cb59b984-8p84h 1/1 Running 10.244.1.39 node1 app=nginx-pod pc-deployment-66cb59b984-vx8vx 1/1 Running 10.244.2.33 node2 app=nginx-pod pc-deployment-66cb59b984-wnncx 1/1 Running 10.244.1.40 node1 app=nginx-pod # 为了方便后面的测试,修改下三台nginx的index.html页面(三台修改的IP地址不一致) # kubectl exec -it pc-deployment-66cb59b984-8p84h -n dev /bin/sh # echo "10.244.1.39" > /usr/share/nginx/html/index.html #修改完毕之后,访问测试 [root@k8s-master01 ~]# curl 10.244.1.39 10.244.1.39 [root@k8s-master01 ~]# curl 10.244.2.33 10.244.2.33 [root@k8s-master01 ~]# curl 10.244.1.40 10.244.1.40

ClusterIP类型的Service

创建service-clusterip.yaml文件

apiVersion: v1 kind: Service metadata: name: service-clusterip namespace: dev spec: selector: app: nginx-pod clusterIP: 10.97.97.97 # service的ip地址,如果不写,默认会生成一个 type: ClusterIP ports: - port: 80 # Service端口 targetPort: 80 # pod端口

# 创建service [root@k8s-master01 ~]# kubectl create -f service-clusterip.yaml service/service-clusterip created # 查看service [root@k8s-master01 ~]# kubectl get svc -n dev -o wide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR service-clusterip ClusterIP 10.97.97.97 <none> 80/TCP 13s app=nginx-pod # 查看service的详细信息 # 在这里有一个Endpoints列表,里面就是当前service可以负载到的服务入口 [root@k8s-master01 ~]# kubectl describe svc service-clusterip -n dev Name: service-clusterip Namespace: dev Labels: <none> Annotations: <none> Selector: app=nginx-pod Type: ClusterIP IP: 10.97.97.97 Port: <unset> 80/TCP TargetPort: 80/TCP Endpoints: 10.244.1.39:80,10.244.1.40:80,10.244.2.33:80 Session Affinity: None Events: <none> # 查看ipvs的映射规则 [root@k8s-master01 ~]# ipvsadm -Ln TCP 10.97.97.97:80 rr -> 10.244.1.39:80 Masq 1 0 0 -> 10.244.1.40:80 Masq 1 0 0 -> 10.244.2.33:80 Masq 1 0 0 # 访问10.97.97.97:80观察效果 [root@k8s-master01 ~]# curl 10.97.97.97:80 10.244.2.33

Endpoint

Endpoint是kubernetes中的一个资源对象,存储在etcd中,用来记录一个service对应的所有pod的访问地址,它是根据service配置文件中selector描述产生的。

一个Service由一组Pod组成,这些Pod通过Endpoints暴露出来,Endpoints是实现实际服务的端点集合。换句话说,service和pod之间的联系是通过endpoints实现的。

负载分发策略

对Service的访问被分发到了后端的Pod上去,目前kubernetes提供了两种负载分发策略:

  • 如果不定义,默认使用kube-proxy的策略,比如随机、轮询
  • 基于客户端地址的会话保持模式,即来自同一个客户端发起的所有请求都会转发到固定的一个Pod上 此模式可以使在spec中添加sessionAffinity:ClientIP选项

# 查看ipvs的映射规则【rr 轮询】 [root@k8s-master01 ~]# ipvsadm -Ln TCP 10.97.97.97:80 rr -> 10.244.1.39:80 Masq 1 0 0 -> 10.244.1.40:80 Masq 1 0 0 -> 10.244.2.33:80 Masq 1 0 0 # 循环访问测试 [root@k8s-master01 ~]# while true;do curl 10.97.97.97:80; sleep 5; done; 10.244.1.40 10.244.1.39 10.244.2.33 10.244.1.40 10.244.1.39 10.244.2.33 # 修改分发策略----sessionAffinity:ClientIP # 查看ipvs规则【persistent 代表持久】 [root@k8s-master01 ~]# ipvsadm -Ln TCP 10.97.97.97:80 rr persistent 10800 -> 10.244.1.39:80 Masq 1 0 0 -> 10.244.1.40:80 Masq 1 0 0 -> 10.244.2.33:80 Masq 1 0 0 # 循环访问测试 [root@k8s-master01 ~]# while true;do curl 10.97.97.97; sleep 5; done; 10.244.2.33 10.244.2.33 10.244.2.33 # 删除service [root@k8s-master01 ~]# kubectl delete -f service-clusterip.yaml service "service-clusterip" deleted

HeadLiness类型的Service

在某些场景中,开发人员可能不想使用Service提供的负载均衡功能,而希望自己来控制负载均衡策略,针对这种情况,kubernetes提供了HeadLiness Service,这类Service不会分配Cluster IP,如果想要访问service,只能通过service的域名进行查询。

创建service-headliness.yaml

apiVersion: v1 kind: Service metadata: name: service-headliness namespace: dev spec: selector: app: nginx-pod clusterIP: None # 将clusterIP设置为None,即可创建headliness Service type: ClusterIP ports: - port: 80 targetPort: 80

# 创建service [root@k8s-master01 ~]# kubectl create -f service-headliness.yaml service/service-headliness created # 获取service, 发现CLUSTER-IP未分配 [root@k8s-master01 ~]# kubectl get svc service-headliness -n dev -o wide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR service-headliness ClusterIP None <none> 80/TCP 11s app=nginx-pod # 查看service详情 [root@k8s-master01 ~]# kubectl describe svc service-headliness -n dev Name: service-headliness Namespace: dev Labels: <none> Annotations: <none> Selector: app=nginx-pod Type: ClusterIP IP: None Port: <unset> 80/TCP TargetPort: 80/TCP Endpoints: 10.244.1.39:80,10.244.1.40:80,10.244.2.33:80 Session Affinity: None Events: <none> # 查看域名的解析情况 [root@k8s-master01 ~]# kubectl exec -it pc-deployment-66cb59b984-8p84h -n dev /bin/sh / # cat /etc/resolv.conf nameserver 10.96.0.10 search dev.svc.cluster.local svc.cluster.local cluster.local [root@k8s-master01 ~]# dig @10.96.0.10 service-headliness.dev.svc.cluster.local service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.40 service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.39 service-headliness.dev.svc.cluster.local. 30 IN A 10.244.2.33

NodePort类型的Service

在之前的样例中,创建的Service的ip地址只有集群内部才可以访问,如果希望将Service暴露给集群外部使用,那么就要使用到另外一种类型的Service,称为NodePort类型。NodePort的工作原理其实就是将service的端口映射到Node的一个端口上,然后就可以通过NodeIp:NodePort来访问service了。

创建service-nodeport.yaml

apiVersion: v1 kind: Service metadata: name: service-nodeport namespace: dev spec: selector: app: nginx-pod type: NodePort # service类型 ports: - port: 80 nodePort: 30002 # 指定绑定的node的端口(默认的取值范围是:30000-32767), 如果不指定,会默认分配 targetPort: 80

# 创建service [root@k8s-master01 ~]# kubectl create -f service-nodeport.yaml service/service-nodeport created # 查看service [root@k8s-master01 ~]# kubectl get svc -n dev -o wide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) SELECTOR service-nodeport NodePort 10.105.64.191 <none> 80:30002/TCP app=nginx-pod # 接下来可以通过电脑主机的浏览器去访问集群中任意一个nodeip的30002端口,即可访问到pod

LoadBalancer类型的Service

LoadBalancer和NodePort很相似,目的都是向外部暴露一个端口,区别在于LoadBalancer会在集群的外部再来做一个负载均衡设备,而这个设备需要外部环境支持的,外部服务发送到这个设备上的请求,会被设备负载之后转发到集群中。

ExternalName类型的Service

ExternalName类型的Service用于引入集群外部的服务,它通过externalName属性指定外部一个服务的地址,然后在集群内部访问此service就可以访问到外部的服务了。

apiVersion: v1 kind: Service metadata: name: service-externalname namespace: dev spec: type: ExternalName # service类型 externalName: www.baidu.com #改成ip地址也可以

# 创建service [root@k8s-master01 ~]# kubectl create -f service-externalname.yaml service/service-externalname created # 域名解析 [root@k8s-master01 ~]# dig @10.96.0.10 service-externalname.dev.svc.cluster.local service-externalname.dev.svc.cluster.local. 30 IN CNAME www.baidu.com. www.baidu.com. 30 IN CNAME www.a.shifen.com. www.a.shifen.com. 30 IN A 39.156.66.18 www.a.shifen.com. 30 IN A 39.156.66.14

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页