简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)

(吐槽一下:头条能不能提供一个公式编辑的方法呀?遇到公式时写数理文章太难受啦!)

简谐振动是最简单最基本的振动,它的典型例子是弹簧振子。

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(1)

水平弹簧振子

什么是弹簧振子呢?一个不考虑质量的弹簧连接一个有质量的小球或物块,然后把它沿着弹簧的方向压缩或者拉伸一定的距离(不要拉得太狠,悠着点儿)后松手,那么物块就会只在弹簧弹力的作用下,周期性地往复振动。弹簧振子是一个理想物理模型。振子速度最大的位置回复力为零,此处称之为平衡位置

在高中我们就知道,弹簧振子的运动学方程可以表达为如下正弦或余弦函数形式:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(2)

它们都表述了振子偏离平衡位置的位移随时间变化的关系。由中学数学可知这两个函数是等价的。那么这个振动方程到底是怎么推导出来的呢?

它们都表述了振子偏离平衡位置的位移随时间变化的关系。由中学数学可知这两个函数是等价的。那么这个振动方程到底是怎么推导出来的呢?

我的书架上有四本书对这个振动方程有所描述,分别是漆安慎版《力学》、人教社的高中物理教材、《费曼物理学讲义》、赵凯华版《新概念物理教程·力学》,外加知乎@烤羚羊的思路。他们面对同一件事虽然思路迥异,却又殊途同归,真真是各有各的特点,各有各的巧妙。我们一起来看看吧^_^


方式一 “易得”型

这种方式的典型代表是漆老的《力学》,在书中,振动方程来自于直接写出微分方程的解,画风是下面这这样的:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(3)

图片摘自漆安慎版《力学》

为什么可以写成这样呢?当时的我左思右想也没搞明白这个余弦函数是怎么来的。漆老可能觉得读者基本都是大学生了,这等小菜,自己可以推出来。看来我和漆老对大学生的基本要求隔了一个地球周长。所以当时我只是把它当成基本结论去记的。现在,这种处理方式着实不能满足我对科学的渴望,必须深究下去。


方式二 科学探究型

这种方式的典型代表是现行高中物理人教版教材。从国家到地方都在大力开展新课程改革,要求在物理教学中要重视学生的物理探究过程,多多体验一下科学家们发现问题、提出猜想、设计实验、得出结论、讨论验证等的科学研究过程。所以人教版高中物理教材是按如下方式得出振动方程的。

首先,观察弹簧振子的频闪照片

让弹簧振子先振动起来,然后让频闪仪对着弹簧振子每隔 0.05s闪光一次,闪光的瞬间振子就会被照亮,从而得到闪光时小球的位置,相邻两个位置之间的时间相隔为0.05 s。拍摄时让底片从左向右匀速运动,因此在底片上留下了小球和弹簧的一系列的像。

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(4)

弹簧振子的频闪照片

弹簧振子的频闪照片

或者,在桌面上放一个弹簧振子(附一支描线笔),下面放上一条长长的宽纸带,然后在弹簧振子振动的同时在一侧把纸带匀速卷起来,这样就得到一条和频闪照片类似的图像。

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(5)

模拟振动图像

模拟振动图像

然后,猜想图像的函数并验证。书上引导读者猜想这是正弦函数。然后根据振幅和周期写出正弦函数表达式,再从实验中得到的图像中选择几个点,得到不同时间所得到的位置值,把这个位置值和表达式中对应时间的函数值做个比较。如果符合得很好,说明振动图像就是对应正弦函数。

接着,书上就直接给出了振动方程,如下图所示。

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(6)

人教版高中教材的这个方法简单直观,规避了严谨的数学推理。其中,把时间作为一个数轴,位移作为另一个数轴,从一维振动中拉一个二维图像的方法是很奇妙的一个思路。

然而,弹簧振子的一维振动,怎么就跟三角函数扯上了关系呢? 弹簧振子难道就有没有什么内在的、固有性质使得它必然与三角函数有关系吗?

答案显示不是。一定是弹簧振子的某些固有属性使得它与三角函数有关系。那么我们首先就得找找,弹簧振子到底有哪些固有的属性和规律呢。


弹簧振子的常微分方程

(如果你是中学生,当你看到常微分方程这五个字时也许会比较纳闷,先不管它,我们来一步步把它给逼出来)

弹簧振子的固有属性

弹簧振子有哪些固有属性会影响到它的振动呢?

首先想到的性质一定有物块的质量m,我们可以想想,在弹簧的拉伸长度一定的前提下,如果物块越重,振子就应该越“懒”,运动状态就越难得改变,也就是振动得越慢。所以质量可能会在振动方程中体现出来。

接着,我们还应该想到弹簧的劲度系数k 也会影响到振动的快慢。如果弹簧越是“硬邦邦”,在弹簧被拉长相同的长度时所具有的拉力就越大,物块受到更大的拉力就应该会更快地回到平衡位置。所以劲度系数也可能会在振动方程中体现出来。

有了质量和劲度系数k,这只是我们寻找振动方程的一小步,还需要从弹簧振子必须满足的内在规律上找。

振子的牛顿第二定律

最先想到的应该是牛顿运动定律。

读高中时书上就讲,牛顿牛爵爷把力和运动通过牛顿第二定律结合起来,小到灰尘,大到天体都可以用,可以说是相当的厉害。弹簧振子自然也不例外。也就是说,弹簧振子一定满足F=ma ,其中,F 就是弹簧受到的弹力,a是振子的加速度。

但是,这和我们寻找的振动方程有什么关系呢?牛二定律里面并没有出现时间、也没有出现位移呀。其实,这里需要一丢丢的微积分知识,利用微积分,加速度可以表达为位置矢量的二阶导数。即可以把牛顿第二定律表达为如下形式:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(7)

如果你没有微积分方面的数学储备,推荐你参阅长尾科技的文章你也能懂的微积分。

这样一操作,x和 t 就立马出现了,似乎答案以经找到了。仔细一想,其实还没有。你想想看,在振子振动的过程中,弹力总是保持不变的吗?显然不是。换句话说,弹力F 也会随着时间,或者说随着位移发生变化。如果力F不随位移变化还好,我们直接积分就可以得到位移和时间的关系了。可是现在F 并不单纯,它里面还藏着x 或t 没有露出来,要想直接积分就比较麻烦。

胡克定律

下一步,我们自然要再去找找F 与x 之间的关系。想必你已经知道了,就是牛顿的死对头胡克发现的胡克定律。胡克定律表达为如下形式:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(8)

胡克定律中有两点需要注意,一是它表达了振子离开平衡位置的位移与所受弹力成正比,二是弹力方向始终与位移的方向相反(前提是我们把振子的平衡位置定义为原点,即位移为0的位置)。

牛顿与胡克的“联姻”——常微分方程

接下来,让人尴尬的一步就出现了。如果我们把胡克定律中表达的F 带进牛顿第二定律中去,再把常数放在一起,就得到了下面这货:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(9)

在数学中为了更一般的讨论,常常把它写成下面这种形式:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(10)

在数学中,第2个方程被称为二阶常微分方程。叫“微分方程”是因为方程中有自变量的微商,叫二阶是因为微商的阶数最高是二阶的,叫“常”是因为等号右边的那一项正好是0。

为什么说尴尬呢?你瞧瞧,有着恩恩怨怨的牛顿和胡克虽然吵了一辈子,但是他们在科学上的成就却彼此左手拉右手,至少在描述简谐振动这件事儿上,别提它们有多甜蜜。

那么该如何求解这个二阶常微分方程,来得到位移x 关于时间t 的表达式呢?解法其实有很多,真真是八仙过海,各显神通了。在这里,我介绍两种求解方式,一个用的是费曼的推理手法,另一个用复数和指数求解的思路。我们一个个地看。

方式三 费曼的推理

费曼是一位擅长通过简单的例子去说明高深问题的大师。比如,1986年,挑战者号失事后,费曼只用一杯冰水和一只橡皮环,就在国会向公众揭示了挑战者失事的根本原因——低温下橡胶失去弹性。而在弹簧振子的问题上,费曼体现了他的另一个能力——面对一个一般的问题,先从简单的情况入手,抓住事物规律的核心,再去考虑补充其他的细节

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(11)

接下来,就让我们一起,看看费曼是如何推导出振子位移随时间变化的振动方程的。

1. 考虑特殊情况,化简微分方程

上面的二阶常微分方程中有两个常数m和k,为分析的方便,我们不妨把m和k 放到一块儿,并令k/m=1 ,即假设有这样一个弹簧振子,它的劲度系数的数值和物块的质量的比值等于1,这个假设显然是允许的。这样,没有常数干扰的微分方程就写成了

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(12)

至于k/m不等于1的情况,我们先放一边儿,过一会儿再考虑它。

2. 抓住微分方程的关键性质尝试构造函数

不知你发现了没有,方程其实表达了这么一个意思:关于时间的函数,在经过两次求导 后居然变回了它自己,还是,只不过多了一个负号

到底是什么样的函数具有这样的性质呢?此处迅速在头脑里回忆一下初等函数,我们发现,正弦函数或余弦函数都行。不妨设

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(13)

3. 根据物理意义优化函数的表达

我们知道,时间的单位是"秒",而余弦cos的括号里装着的应该是以"度"为单位的角度量。因此括号里面不单单有时间,还应该乘上一个量,使得它与时间的乘积是一个角度

我知道你一定想到了圆周运动的角速度w,因为它乘以时间就是角度。不过,这里需要提醒一下,我们需要的量虽然与角速度在单位上相同,但它并不是物体旋转时的角速度,因为这里的振子并没有体现出旋转的意思。但是我们依然可以借用这个符号,把这个量写成 w0 。这样,振动方程进一步被优化成了下面这个样子:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(14)

这个函数离我们的目标以经很近了,可是那个到底是个啥?它有什么物理意义呢?我们还需要进一步探索。

4.把函数尝试代入微分方程

为了理解w0的物理意义,我们把猜测的带入二阶常微分方程中,去看看w0将会有什么表现。代入后的结果如下:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(15)

通过比较(1)、(5)这两个式子我们发现,只要令等号右边

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(16)

这两个式子就相同了。那么

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(17)

可以看出,这个w0的确跟弹簧的固有属性有关系,那么这个关系体现在什么方面呢?

结合物理情景分析意义

对函数

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(18)

,我们结合实际振动来分析看看。

  1. 首先振子的位移一定在一个区间内变化,最大值有正负之分,有对称性,而且最小值为0,余弦函数的取值范围是(-1,1) ,也具有对称性;
  2. 当时间t=0时,x取最大值,这表示振子是从最大位移处开始运动的;
  3. 振子振动具有周期性,而cosw0t 正好是周期函数。

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(19)

表明振子从最大位移处开始运动并计时

函数的性质与振子的物理性质符合得很好,所以我们有理由相信,弹簧振子的运动学方程一定具有余弦函数的内核

但是还有个问题,振子的振动周期,到底等于多少呢

这个问题其实很好回答。我们知道,所谓周期,其实就是物体经过一个时间段T之后,正好回到出发点。而在余弦函数cosθ中,周期是2π。也就是说,当振子运动了t=T的时间后, 括号中所谓的"角度"w0t 就将等于2π。这样我们就有

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(20)

,这样就求得了周期的表达式为:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(21)

这个表达式说明什么意思呢?

  1. 表明了当振子质量越大,振动的周期越大,即振子振动得越慢;
  2. 表明了当弹簧劲度系数越大,振子得周期越小,即振子振动得越快。这和我们上面得讨论和实验规律相吻合。

说到这里,对于振子的运动方程,我们不仅把它的盖头掀开了一大半,还顺带求出了弹簧振子的振动周期,还进一步发现了是一个跟周期有关的量,表达了振动的固有属性

由特殊到一般,得到通解

通过刚才的分析我们知道,cos(w0t) 仅仅表达了振子从最大位移处开始运动的情况,此时振子的速度为0,然而,振子的运动初速度可以不为0啊。比如本来振子静止在平衡位置,现在让一颗子弹射入振子内部,并从此刻开始计时,那么振子的运动方程就不再是余弦,而要用正弦。

更进一步想想下这个场景,你正在用秒表去记录振子的运动,让秒表指零时为计时起点,此时振子在最大位移处,振动方程正好是余弦。然后牛顿也带着秒表走进来,他刚令秒表从零开始计时(假设你的秒表已经走过了的△t 时间),就发现振子在最大位移的一半处。这个时候,对牛顿而言,他在零时刻看到的振子的位置,应该跟你经过了△t时看到的位置是一样的。因此,振动方程应该写作:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(22)

还有最后一个事儿没处理干净,就是振子的振幅,在上面的表达式中,余弦函数的最大值只是1,对应着我们仅仅把振子拉开离平衡位置一个单位长度,可是我们可以把振子拉开到任意长度后松手,也就是振幅可以是1的倍数,也就是说,我们只需要把振幅A 乘到余弦函数前面即可。最终,振子的运动学方程就变成了:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(23)

这就是以弹簧振子为代表的简谐振动的通解。

方式四 用复变函数的思路

这个思路要感谢知乎大佬@烤羚羊,他也是从二阶常微分方程入手,在他给出的求解过程中一开始和费曼是一样的,都是先猜想解的形式。只不过,费曼猜想的是余弦函数,而@烤羚羊猜想的是指数,即e^(λt),它和余弦函数一样,也可以在经历两次求导后得到于原函数类似的形式。经过一通推导后,得到了简谐振动方程的复数形式如下:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(24)

有兴趣的同学可以跳转到知乎@烤羚羊的文章(https://zhuanlan.zhihu.com/p/133809744)去看看。

在下一篇文章中,我将从简谐振动的复数形式出发,去看看怎么在GeoGebra中把简谐振动与圆周运动直观地联系起来。

方式五 能量守恒大法好

上面的做法总结起来无外乎两种,一种是从振子的实验数据出发,去猜余弦函数(高中教材的做法),一种是从振子的动力学方程出发,去猜常微分方程的解的可能形式(费曼的做法和知乎@烤羚羊的做法)。都是靠猜

那有没有什么办法可以不用靠猜,直接通过严谨的数学推导就能得出振动方程呢?有的,就是利用机械能守恒定律。这和上面的思路完全不同,《新概念物理学教程·力学》中用的就是这种办法。我们一起看看吧^_^

弹簧振子具有的能量

为了讨论振子的运动学方程,我们先看看振子运动过程中的不变量——总能量

对于宏观的弹簧振子而言,总能量无外乎两种,一种是振子的动能,我们在中学就已经知道,显然它和振子的速度有关系,而速度是位置的一阶导数。另一种是系统的弹性势能,那么弹性势能的具体表达式又是什么呢?我么一起把它搞出来。

弹性势能的泰勒级数

我以前被泰勒级数这四个字吓住过,不知道是个什么玩意儿,随着认识的加深,我逐渐明白了它的意义——用来近似的。部分读者可能还蒙在鼓里。接下来请允许我对它多唠叨几句。

首先,我们给出弹性势能的泰勒级数展示式。为了讨论的方便,我们把平衡位置记为0点,那么偏离平衡位置的位移和振子的位置在数值上相等,这样,振子的泰勒级数可以表达为如下形式:

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(25)

大家不要被这么一长串公式给吓着,怎么理解它的意义呢?我们通过分析一副石膏像的素描过程来理解它。

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(26)

摩西石膏像的素描图

在上图的素描画中,第一步先画出人物的轮廓,虽然它和真实的照片差距很远,但仍然可以知道这画了一个人,我把它称为对真实照片的模拟加入了一阶近似

接着第二步,对人像的五官进行深入勾勒,这时我们发现摩西的感觉已经出来了,但还是和真实照片有差距,我把它称为对真实照片的模拟加入了二阶近似

然后到了第三步,画家开始对照片中的光影明暗进行深入分析和表现,使得素描画更加立体丰满,此时的画作和真实照片的差距已经很小了。我把这称为对真实照片的模拟加入了三阶近似

现在你应该明白了,只要我们不断地近似下去,让近似项越来越多,我们对原始对象表现将会越来越逼真

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(27)

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(28)

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(29)

换元积分求解

有了动能和势能的表达式,我们就可以得到总的机械能表达式

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(30)

为了等会儿便于积分,把它再改写成

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(31)

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(32)

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(33)

简谐振动的动力学方程怎么解(简谐振动的运动学方程是怎么来的)(34)

最后的话

洋洋洒洒六千多字,不算多但也不算少,经过这么一通分析,我主要感受到以下两点:

  1. 要想认真学懂一个知识,少不了旁征博引,博览群书,不要囿于一家之言。因为一本书有一本书的观点,它往往会受作者的意图、篇幅、定位等方面的考虑,不一定面面俱到。
  2. 把学到的知识写下来,讲给大家听,会加深、巩固和检验你对知识了解,还能结交优秀的人。我以前很自卑,很少跟人交流,加上之前视野不开阔,学习不够深入,对很多知识的认识只是浮于表面。在长尾君的引导下,我逐渐学着去学习,学着写点东西,把学到的东西再讲出来。这么做不仅利己,还能利人,何乐而不为呢?

关于简谐振动的方程,也许还有其它的推导方式,如果你知道的话,欢迎在下方评论区留言与我分享,让更多的人知道^_^

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页