可靠性增长试验(可靠性知识加速寿命试验)

加速寿命试验是指采用加大应力的方法促使样品在短期内失效,以预测在正常工作条件或储存条件下的可靠性,但不改变受试样品的失效分布。若加速寿命与实用寿命的失效模式相同,即可运用加速寿命试验。高加速寿命试验不用于确定产品的寿命。加速寿命试验比起高加速寿命试验的一个优势是,我们不需要任何环境设备。

1 简介

加速寿命试验的统一定义最早由美罗姆航展中心于1967年提出,加速寿命试验是在进行合理工程及统计假设的基础上,利用与物理失效规律相关的统计模型对在超出正常应力水平的加速环境下获得的信息进行转换,得到产品在额定应力水平下的特征可复现的数值估计的一种试验方法。简言之,加速寿命试验是在保持失效机理不变的条件下,通过加大试验应力来缩短试验周期的一种寿命试验方法。加速寿命试验采用加速应力水平来进行产品的寿命试验,从而缩短了试验时间,提高了试验效率,降低了试验成本。

进行加速寿命试验必须确定一系列的参数,包括(但不限于):

试验持续时间、样本数量、试验目的、要求的置信度、需求的精度、费用、加速因子、外场环境、试验环境、加速因子计算、威布尔分布斜率或β参数(β < 1表示早期故障,β> 1 表示耗损故障) 。用加速寿命试验方法确定产品寿命,关键是确定加速因子,而有时这是最困难的。

一般用以下两种方法。

2 方法

(1) 现有模型。现有模型有:Arrhenius模型、Coffin2Manson模型和Norris2Lanzberg模型等。使用现有模型比用试验方法来确定加速因子节省时间,并且所需样本少,但不是很精确,且模型变量的赋值较复杂。

(2)通过试验确定的模型(需要大量试验样本和时间) 。若没有合适的加速模型,就需要通过试验导出加速因子。先将样本分成3个应力级别:高应力、中应力、低应力。制定试验计划确保在每一个应力级别上产生相同的失效机理。这是确定加速因子较精确的方法,但需要较长的时间和较多样本。

3 类型

按照试验应力的加载方式,加速寿命试验通常分为恒定应力试验、步进应力试验和序进应力试验三种基本类型,如图1所示。它们分别表示了三种基本加速寿命试验的应力加载历程。

可靠性增长试验(可靠性知识加速寿命试验)(1)

图1

(1)恒定应力试验(Constant-Stress Testing: CST)

其特点是对产品施加的“负荷”的水平保持不变,其水平高于产品在正常条件下所接受的“负荷”的水平。试验是将产品分成若干个组后同时进行,每一组可相应的有不同的“负荷”水平,直到各组产品都有一定数量的产品失效时为止。恒定应力试验的应力加载时间历程见图 2(a)。

(2)步进应力试验(Step-Up-Stress Testing: SUST)

此试验对产品所施加的“负荷”是在不同的时间段施加不同水平的“负荷”,其水平是阶梯上升的。在每一时间段上的“负荷”水平,都高于正常条件下的“负荷”水平。因此,在每一时间段上都会有某些产品失效,未失效的产品则继续承受下一个时间段上更高一级水平下的试验,如此继续下去,直到在最高应力水平下也检测到足够失效数(或者达到一定的试验时间)时为止。步进应力试验的应力加载时间历程见图 2(b)。

(3)序进应力加速寿命试验(Progressive Stress Testing:PST)

序进应力试验方法与步进应力试验基本相似,区别在于序进应力试验加载的应力水平随时间连续上升。图 2(c)表示了序进应力加载最简单的情形,即试验应力随时间呈直线上升的加载历程。

可靠性增长试验(可靠性知识加速寿命试验)(2)

图2

4 条件

若加速寿命与实用寿命的失效模式相同,即可运用加速寿命试验。但实际上,有时失效模式相同,失效机构(Mechanism)却不同,或即使失效机构亦相同,但失效判定条件或使用条件变动的话,加速性就变化。在长期的研发改进过程中,产品的设计或制造方法都可能发生变化,顾客的使用条件方可能发生变化;或是以规定的技术方法所生产的产品,也因存在无法控制的因素影响,造成失效机构的改变,这些都可能造成无法利用加速寿命试验。

例如,电子管的寿命满足Arrhenius的关系式,所以可提高阴极温度,实施加速寿命试验。假设电视机用布朗管若使阴极温度成为额定值的100%,可实施加速因子为2.2倍至3倍的加速寿命试验。但不论是阴极温度低于额定,或不从阴极取电流而使用电子管时,都会显著减短寿命。两者之失效模式都是电子放射不良,但其间的差异在于失效机构不同。电子管常因阴极活性物质的减少而使电子放射特性劣化,但阴极温度减低的话,管内不纯气体的作用亦会使电子放射特性劣化;若不取电流而动作的话,阴极内部生成的中间层化合物电阻增大,亦使电子放射特性劣化,所以即使判定寿命的失效模式相同,失效机构也不同。故电子管须检讨实际使用时阴极温度的偏差、间歇动作等条件,才能决定实施加速寿命试验之方法。

5 范围

除了以上所提的问题外,在规划加速寿命试验时须综合考虑下列问题,才能选定加速寿命试验的条件,以决定其适用的范围:

(1)施加应力之大小不同可能形成不同的失效模式,在此种情形下,应力加速法之使用受到限制。

(2)失效发生时间与施加应力强度之间,可能因应力大小之不同或因机械操作条件不同而有不同的关系,放在加速寿命试验规划之初,就应该注意到此种应力加速适用范围的问题。

(3)可在若干不同的试验方法及不同的失效分析基准之中,选用加速因子较大的方法,以较短试验时间评估寿命的效用。

(4)产品在实地使用状况下,应力的变动大,失效发生的条件方可因使用者不同而异;或即使是反应机构相同的失效,分散亦颇不均匀,因此利用实验数据推定实际使用寿命时,应尽量指定累积失效率加以推定,以避免因数据不充足造成错误的分析。

6 高加速寿命试验和加速寿命试验的比较

如前所叙述的加速寿命测试的特性,高加速寿命试验不用于确定产品的寿命。因为我们关心的是使产品尽可能提高可靠性,可靠性量值的测定并不重要。然而,对于具有耗损时间的机械产品,尽可能准确地知道其寿命是非常重要的。

一个重要优势就是在找寻影响外场使用的缺陷方面的速度较快。完成一个典型的高加速寿命试验仅需2-4天,而且我们找寻的最终将变成外场使用问题的缺陷的成功率非常高。

如前所叙述的加速寿命测试的特性,加速寿命试验比起高加速寿命试验的一个优势是,我们不需要任何环境设备。通常,台架上试验就足够了。并且许多情况下,在用户的设施上就能进行该试验。另一个好处就是试验能同时确定产品的寿命,而这一点对高加速寿命试验来说却做不到。

上面我们对加速寿命测试的概念有一定了解了,下面我们对3种加速寿命试验方法来比较:

加速寿命试验分为恒定应力、步进应力和序进应力加速寿命试验。将一定数量的样品分成几组,对每组施加一个高于额定值的固定不变的应力,在达到规定失效数或规定失效时间后停止,称为恒定应力加速寿命试验(以下简称恒加试验);应力随时间分段增强的试验称步进应力加速寿命试验(以下简称步加试验);应力随时间连续增强的试验称为序进应力加速寿命试验(以下简称序加试验)。

序加试验可以看作步进应力的阶梯取很小的极限情况。

加速寿命试验常用的模型有阿伦尼斯(Arrhenius)模型、爱伦(Eyring)模型以及以电应力为加速变量的加速模型。实际中Arrhenius模型应用最为广泛,本文主要介绍基于这种模型的试验。

Arrhenius模型反映电子元器件的寿命与温度之间的关系,这种关系本质上为化学变化的过程。方程表达式为

可靠性增长试验(可靠性知识加速寿命试验)(3)

式中:dM/dt 为化学反应速率;E为激活能量(eV);k为波尔兹曼常数0.8617×10-4 eV/K;A为常数;T为绝对温度(K)。式⑴可化为:

可靠性增长试验(可靠性知识加速寿命试验)(4)

式中:

可靠性增长试验(可靠性知识加速寿命试验)(5)

式中:F0为累计失效概率;t(F0)为产品达到某一累计失效概率 F(t)所用的时间。算出b后,则

可靠性增长试验(可靠性知识加速寿命试验)(6)

式⑵是以Arrhenius方程为基础的反映器件寿命与绝对温度T之间的关系式,是以温度T为加速变量的加速方程,它是元器件可靠性预测的基础。

试验方法

1、恒定应力加速寿命试验

目前应用最广的加速寿命试验是恒加试验。恒定应力加速度寿命试验方法已被IEC标准采用[1] 。其中3.10加速试验程序包括对样品周期测试的要求、热加速电耐久性测试的试验程序等,可操作性较强。恒加方法造成的失效因素较为单一,准确度较高。国外已经对不同材料的异质结双极晶体管(HBT)、CRT阴极射线管、赝式高电子迁移率晶体管开关(PHEMT switch)、多层陶瓷芯片电容等电子元器件做了相关研究。

Y.C.Chou等人对GaAs 和InP PHEMT单片微波集成电路(MMIC)放大器进行了恒加试验 [2]。下面仅对GaAs PHEMT进行介绍,InP PHEMT同前。对于GaAs PHEMT MMIC共抽取试验样品84只,分为三组,每组28只,环境温度分别为 T1= 255 ℃,T2=270 ℃,T3=285 ℃,所有参数均在室温下测量。失效判据为44GHz时,|Δ S21|>1.0 dB。三个组的试验结果如表1所示,试验数据服从对数正态分布。表中累计失效百分比、中位寿命、对数标准差(σ)均由试验数据求得。其中累计失效百分比=每组失效数/(每组样品总数+1);中位寿命为失效率为50%时的寿命,可在对数正态概率纸上画寿命-累计失效百分比图得出:σ≈lgt(0.84)-lgt(0.5)。

由表1根据恒定应力加速寿命试验结果使用 Origin软件可画出图1。图中直线是根据已知的三个数据点用最小2乘法拟合而成,表示成 y=a bx。经计算

y=-12.414 8.8355x,

可靠性增长试验(可靠性知识加速寿命试验)(7)

可靠性增长试验(可靠性知识加速寿命试验)(8)

代入沟道温度T0 =125 ℃,求其对应的x0,

x0=1000/(273 125)=2.512562

MTTF=lg-1y(x 0)=6.1×109h

拟合后直线的斜率b为8.8355×10 3,则激活能

Ea=2.303bk ≈1.7 eV

因此,沟道温度为125 ℃时,估计GaAs的MTT大于1×108 h,激活能为1.7 eV。

2、步进应力加速寿命试验

步加试验时,先对样品施加一接近正常值的应力,到达规定时间或失效数后,再将应力提高一级,重复刚才的试验,一般至少做三个应力级。步进应力测试条件见表2。

可靠性增长试验(可靠性知识加速寿命试验)(9)

Frank Gao和Peter Ersland对SAGFET进行了步加试验[3]。温度从150~270 ℃划为六级,每70 h升高25 ℃;沟道温度约比环境温度高30 ℃。总试验时间约400 h。根据Arrhenius模型[4]

可靠性增长试验(可靠性知识加速寿命试验)(10)

式⑶可化为

将式⑷看作

y=a bx,

式中:

可靠性增长试验(可靠性知识加速寿命试验)(11)

则根据试验数据做温度的倒数——某参数改变量(本试验选取Idss,Ron 等),

即:

可靠性增长试验(可靠性知识加速寿命试验)(12)

拟合后,斜率b可直接读出,乘以 k可得激活能。本文估算出Ea=1.4 eV,再由MTTF(T0)=MTTF(T1)×exp[Ea(T1- T0)/kT1T 0]

由试验得到某一高温时器件的MTTF( T1),进而可得到样品在125 ℃时的寿命大于107 h。这个结果和常应力测试结果相吻合。

3、序进应力加速寿命试验

序加试验的加速效率是最高的,但是由于其统计分析非常复杂且试验设备较昂贵,限制了其应用。这方面的报道也较少。

北京工业大学李志国教授报道了微电子器件多失效机理可靠性寿命外推模型[5],他的学生李杰等人报道了快速确定微电子器件失效激活能及寿命试验的新方法 [6]。

试验中对器件施加按一定速率β 上升的斜坡温度,保持电流密度j和电压V不变。做ln( T-2ΔP/P0)与1/T曲线,找出曲线的线性段,并经线性拟合得到一直线,设直线的斜率为 S,则器件的失效激活能E=-kS。得出激活能 E后,就可以外推某一使用条件下的元器件寿命

可靠性增长试验(可靠性知识加速寿命试验)(13)

李志国老师和他的学生采用上面方法对pnp 3CG120C双极型晶体管做了序加试验。初始温度T为443 K,升温速率β=1 K/8 h,t时刻的结温为T=T0 βt ΔT。电应力:VCE=-27 V,IC=18.5 mA;测试条件:VCE=-10 V,IC=30 mA,室温下测量;失效判据:hFE的漂移量Δ hFE/hFE≥±20%。372 #样品的试验数据如图2所示。

可靠性增长试验(可靠性知识加速寿命试验)(14)

鉴于图2中曲线段a最接近使用温度,能最好地反映正常工作条件下的失效机理,所以选择a段数据用Excel软件做出ln( T -2ΔhFE/hFE )与1/T曲线,并做线性拟合得到一直线,其斜率为 S,则器件的失效激活能E=-kS=0.7 eV。由图2 a段外推出样品的hFE退化20%所需的试验时间如图3所示。根据GJB/Z299C-200x表5.1.1-5c可计算出,样品正常使用时的结温为60 ℃左右。

可靠性增长试验(可靠性知识加速寿命试验)(15)

式⑸经数学处理可变为

可靠性增长试验(可靠性知识加速寿命试验)(16)

代入T=585 K,求得τ372#=1.2×10 7 h,这个结果与经验数据1.92×107 h是可以比拟的。

试验方法的比较

1、加速寿命试验的实施

恒加试验一般需要约1000 h,总共要取上百个样品,要求应力水平数不少于3个。每个应力下的样品数不少于10个,特殊产品不少于5只。每一应力下的样品数可相等或不等,高应力可以多安排一些样品。

步加试验只需1组样品,最好至少安排4个等级的应力,每级应力的失效数不少于3个,这样才能保证数据分析的合理性。另外,James A. McLinn提出了在步加试验中具体操作的一些有价值的建议 [7]。例如试验应力的起始点选在元器件正常工作的上限附近,应力最高点的选择应参考之前的试验经验或是已知的元器件失效模式来设定,将应力起始点到最高点之间分成3~6段;试验前需确定应力步长的的最小和最大值。

序加试验的样品数尚无明确的规定。步加、序加试验只需几百小时,取几十个样品甚至更少且只需一组样品就可以完成试验。

目前应用最广的是恒加试验,但其试验时间相对较长,样品数相对多一些。相比之下,步加、序加试验在这方面要占优势。当样品很昂贵、数量有限或只有一个加热装置时,步加、序加试验无疑是最好的选择。

2、加速寿命试验的应用

恒加试验已经成熟地应用于包括航空、机械、电子等多个领域。

步加试验往往作为恒定应力加速寿命试验的预备试验,用于确定器件承受应力的极大值。如金玲[8] 在GaAs红外发光二极管加速寿命试验中,用步加试验确定器件所能承受的最高温度,而后再进行恒加试验,避免了在恒加试验中出现正常使用时不会出现的失效机理。步加试验也可应用于缩短试验时间。已经有将恒加试验结合步加试验以缩短试验时间的做法[9]。

序加试验的优点是时间短,但其精度不高,而且实施序加试验需要有提供符合要求应力以及实时记录样品失效的设备。例如冷时铭等人在固体钽电容加速寿命试验中采用自行研制的JJ-1渐近电压发生器控制直流稳压电源提供序进电压,电容测量和漏电流测量分别采用HP公司的4274A和414型漏电流测量仪,失效时间用可靠性数据采集系统记录。

又如,北京工业大学李志国教授等人在做高频小功率晶体管序加试验中也搭建了一套完整的试验系统,系统由控温仪、热电偶、样品加热平台组成温度应力控制系统;由偏置电源、万用表、加载电路板组成电应力偏置系统;测试采用Agilent 4155C 半导体参数测试仪和QT16晶体管特性图示仪完成。

结语

当今,电子产品的更新速度越来越快,而既快速又准确的加速寿命测试方法是研究人员热切期望。相信这一愿望定会早日实现。

---END---

免责声明:本公众号所载文章为本公众号原创或根据网络搜集编辑整理,文章版权归原作者所有。如涉及作品内容、版权和其它问题,请跟本号联系!文章内容为作者个人观点,并不代表本公众号赞同或支持其观点。本公众号拥有对此声明的最终解释权。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页