微分和积分啥关系(先有微分还是先有积分)

作者 张天蓉当我们学习微积分时,都是从微分(或者说导数)的定义开始也就是说,先学微分,再学积分然而,从前面几节追溯古希腊和古中国数学发展的历史来看,古代数学家就已经有了计算许多不同几何形状的面积和体积的方法也就是说,古时候就已经有了积分的概念和初步方法,今天小编就来聊一聊关于微分和积分啥关系?接下来我们就一起去研究一下吧!

微分和积分啥关系(先有微分还是先有积分)

微分和积分啥关系

作者 张天蓉

当我们学习微积分时,都是从微分(或者说导数)的定义开始。也就是说,先学微分,再学积分。然而,从前面几节追溯古希腊和古中国数学发展的历史来看,古代数学家就已经有了计算许多不同几何形状的面积和体积的方法。也就是说,古时候就已经有了积分的概念和初步方法。

因此,微分积分,在微积分的教学中,与微积分的历史发现过程中,次序是反过来的。前者是先微分后积分,后者是先有积分,后有微分。从人类思维的角度细究一下这个区别,也许对在教学中如何贯穿相应数学概念的发现历史有所帮助。

数学中常常看见正运算和逆运算的对立,例如,加和减、乘和除、平方和开方等等。我们学习了微积分后知道,微分和积分也是一对正运算和逆运算。但这个“正反”运算的对立,从直观上看起来并不是那么明显。从直觉来说,微分和积分都不是一下子就发明出来的。积分用于求体积面积等静态的物理量,微分用来求曲线斜率,即变化率等一类具有动感的物理量,两者似乎独立互不相关。就人类的认识过程而言,认识静态事物的物理规律远比认识动态事物容易。所以,从古代就有了计算复杂形状体积的要求,这些需求刺激如阿基米德、祖冲之之流的数学家们进行研究,从而产生了一些类似积分的方法。而对变化率计算的要求,基本上是在离阿基米德将近两千年之后的意大利物理学家伽利略(GalileoGalilei,1564年-1642年)研究自由落体运动等力学规律的时候才开始产生。

用现代的眼光来看发现微积分的历史,可以分为3个阶段:1. 极限概念,2. 积分法求体积面积,3.发现微分积分互逆。极限概念必须先行,这点在两个过程中是一样的。

通常认为最后一步(发现微分积分互逆)是被牛顿和莱布尼茨分别独立完成的,因此将发明微积分的功劳归于他们俩。但实际上从现代数学的观念来看,微分和积分作为互逆运算的本质,是被“微积分基本定理”所描述的。早在牛顿和莱布尼茨之前,对“微积分基本定理”,就已经有一个长长的研究历史。因此,为了更深入理解微分积分之间的联系,我们探索一下“微积分基本定理”发现的历史过程。从展示历史的线索,能让我们明白这个定理为何重要?以及隐藏于微积分概念背后的科学动机。

微积分基本定理包括两个部分:第一部分表明不定积分是微分的逆运算,阐明了原函数的存在;第二部分表明定积分可以用无穷多个原函数的任意一个来计算。

伽利略对科学的贡献无人能比。他常被人们(包括爱因斯坦)誉为是“现代科学之父”,当代物理学家霍金也说:“自然科学的诞生主要归功于伽利略。”伽利略的贡献是多方面的,这儿仅举力学方面一例:他做的落体实验证明了:物体下落的运动不是匀速运动,而是加速运动。如何在数学上来描述非匀速运动呢?这显然要涉及到如今我们熟知的“即时速度”的概念。有了微分(导数)之后,即时速度的意义不难理解,由此可知,伽利略的力学理论为微分理论的建立提出了实用意义上的“需求”。

伽利略晚景凄凉,被教会软禁在家,最后双目失明。但他直到临终前仍在从事科学研究。经常陪伴他的是他的最后的学生之一:以发明气压计而闻名的意大利物理学家、数学家托里拆利(EvangelistaTorricelli, 1608∼1647)。

托里拆利在研究伽利略的力学贡献时,意识到在抛物线上进行的两种运算(类似微分,积分)是互逆的。但他并未真正建立“微積分基本定理”。

后来,苏格兰数学家詹姆斯·格里高利(JamesGregory,1638年-1675年)首先发表了该定理基本形式的几何证明,牛顿的老师,艾萨克·巴罗证明了该定理的一般形式。然后才是牛顿和莱布尼茨。最后是100多年之后的法国数学家柯西(LouisCauchy,1789年-1857年)将微积分理论,包括“基本定理”严格化。

实际上,发明微积分最早的先驱人物之一,不能漏掉法国(业余)数学家费马,下次专门介绍他。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页